Exploring the role of galectin-9 and artemin as biomarkers in long COVID with chronic fatigue syndrome: links to inflammation and cognitive function

Abstract:

This study aimed to assess plasma galectin-9 (Gal-9) and artemin (ARTN) concentrations as potential biomarkers to differentiate individuals with Long COVID (LC) patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) from SARS-CoV-2 recovered (R) and healthy controls (HCs).

Receiver operating characteristic (ROC) curve analysis determined a cut-off value of plasma Gal-9 and ARTN to differentiate LC patients from the R group and HCs in two independent cohorts.

Positive correlations were observed between elevated plasma Gal-9 levels and inflammatory markers (e.g. SAA and IP-10), as well as sCD14 and I-FABP in LC patients. Gal-9 also exhibited a positive correlation with cognitive failure scores, suggesting its potential role in cognitive impairment in LC patients with ME/CFS.

This study highlights plasma Gal-9 and/or ARTN as sensitive screening biomarkers for discriminating LC patients from controls. Notably, the elevation of LPS-binding protein in LC patients, as has been observed in HIV infected individuals, suggests microbial translocation. However, despite elevated Gal-9, we found a significant decline in ARTN levels in the plasma of people living with HIV (PLWH). Our study provides a novel and important role for Gal-9/ARTN in LC pathogenesis.

Source: Elahi Shokrollah , Rezaeifar Maryam , Osman Mohammed , Shahbaz Shima. Exploring the role of galectin-9 and artemin as biomarkers in long COVID with chronic fatigue syndrome: links to inflammation and cognitive function. Frontiers in Immunology, Vol 15, 2024. DOI=10.3389/fimmu.2024.1443363. ISSN=1664-3224. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1443363 (Full text)

 

Psychological outcomes of COVID-19 survivors at sixth months after diagnose: the role of kynurenine pathway metabolites in depression, anxiety, and stress

Abstract:

Coronavirus disease 2019 (COVID-19) has resulted in long-term psychiatric symptoms because of the immunologic response to the virus itself as well as fundamental life changes related to the pandemic. This immune response leads to altered tryptophan (TRP)-kynurenine (KYN) pathway (TKP) metabolism, which plays an essential role in the pathophysiology of mental illnesses. We aimed to define TKP changes as a potential underlying mechanism of psychiatric disorders in post-COVID-19 patients.

We measured plasma levels of several TKP markers, including KYN, TRP, kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and quinolinic acid (QUIN), as well as the TRP/KYN, KYNA/3-HK, and KYNA/QUIN ratios, in 90 post-COVID-19 patients (on the first day of hospitalization) and 59 healthy controls (on the first admission to the Check-Up Center). An online questionnaire that included the Depression, Anxiety and Stress Scale-21 (DASS-21) was used 6 months after the initial assessment in both groups.

A total of 32.2% of participants with COVID-19 showed depressive symptoms, 21.1% exhibited anxiety, and 33.3% had signs of stress at follow-up, while 6.6% of healthy controls exhibited depressive and anxiety symptoms and 18.6% had signs of stress. TRP and 3-HK were negative predictors of anxiety and stress, but KYN positively predicted anxiety and stress. Moreover, TRP negatively predicted depression, while KYNA/3-HK was a negative predictor of anxiety.

The correlation between depression, anxiety, and stress and TKP activation in COVID-19 could provide prospective biomarkers, especially the reduction in TRP and 3HK levels and the increase in KYN. Our results suggest that the alteration of TKP is not only a potential biomarker of viral infection-related long-term psychiatric disorders but also that the therapy targets future viral infections related to depression and anxiety.

Source: Kucukkarapinar M, Yay-Pence A, Yildiz Y, Buyukkoruk M, Yaz-Aydin G, Deveci-Bulut TS, Gulbahar O, Senol E, Candansayar S. Psychological outcomes of COVID-19 survivors at sixth months after diagnose: the role of kynurenine pathway metabolites in depression, anxiety, and stress. J Neural Transm (Vienna). 2022 Aug;129(8):1077-1089. doi: 10.1007/s00702-022-02525-1. Epub 2022 Jul 7. PMID: 35796878; PMCID: PMC9261222. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9261222/ (Full text)

Circulating microaggregates as biomarkers for the Post‐COVID syndrome

Abstract:

CoVID-19 can develop into Post-COVID syndrome of potentially high morbidity, with procoagulation and reactivation of dormant viral infections being hypothesized pathophysiological mechanisms. We report on a patient suffering from fatigue, post exertional malaise, pain and neurological symptoms as a consequence of the second CoVID infection. Using live confocal microscopy on native whole blood samples we detected microaggregates of thrombocytes, leukocytes and plasma proteins in peripheral blood.

In addition, there was specific cellular immunological reactivity to EBV. Upon anticoagulatory and virustatic pharmacological therapy we observed dissolution of microaggregates and significant stable clinical remission. We suggest to consider circulating microaggregates as a morphological indicator of chronic post-COVID syndrome.

Source: M. Hermann , C. Lisch, R. Gerth, G. Wick, D. Fries, N. Wick. Circulating microaggregates as biomarkers for the Post‐COVID syndrome. IDCases, Volume 36, 2024, e02000. https://www.sciencedirect.com/science/article/pii/S2214250924000763 (Full text)

Blood transcriptomic analyses reveal persistent SARS-CoV-2 RNA and candidate biomarkers in post-COVID-19 condition

Abstract:

With an estimated 65 million individuals affected by post-COVID-19 condition (also known as long COVID), non-invasive biomarkers are direly needed to guide clinical management. To address this pressing need, we used blood transcriptomics in a general practice-based case-control study. Individuals with long COVID were diagnosed according to WHO criteria, and validated clinical scales were used to quantify patient-reported outcomes.

Whole blood samples were collected from 48 individuals with long COVID and 12 control individuals matched for age, sex, time since acute COVID-19, severity, vaccination status, and comorbidities (appendix 1 p 2). Digital transcriptomic analysis was performed using the nCounter (Nanostring Technologies, Seattle, WA, USA) platform, as described for critical COVID-19.

Consequently, 212 genes were identified to be differentially expressed between individuals with long COVID and controls (figure A), of which 70 remained significant after adjustment for false discovery rate correction (appendix 1). Several viral RNAs were upregulated: nucleocapsid, ORF7a, ORF3a, Mpro (a nirmatrelvir plus ritonavir [Paxlovid] target), and antisense ORF1ab RNA. Specifically, the upregulation of antisense ORF1ab RNA suggests ongoing viral replication. SARS-CoV-2-related host RNAs (ACE2/TMPRSS2 receptors, DPP4/FURIN proteases) and RNAs prototypical for memory B-cells and platelets were also upregulated (figure A).

Multivariable logistic regression identified antisense SARS-CoV-2 and FYN RNA concentrations as independent predictors of long COVID (corrected for age and sex; appendix 1 p 2). Receiver operating characteristic curve analysis showed significant discrimination (area under curve [AUC] 0·94, 95% CI 0·86–1·00) between individuals with long COVID (n=48) and controls (n=12), with 93·8% sensitivity and 91·7% specificity (figure B).

Single biomarkers antisense SARS-CoV-2 (AUC 0·78, 0·65–0·90) and FYN RNA (AUC 0·89, 0·79–0·99) were significant predictors with lower sensitivity (52·1% and 72·9%, respectively) but similar specificity (91·7% and 100%, respectively; figure B). Upon summarising transcriptomic results into biological pathways, we found significantly decreased immunometabolism in individuals with long COVID, which was negatively correlated with the blood viral load (appendix 1 p 3).

A qualitative analysis of individual SARS-CoV-2 transcript positivity revealed significant differences between individuals with long COVID and controls for antisense (65% vs 25%), ORF7a (60% vs 25%), and nucleocapsid (50% vs 8%) RNAs (figure C). Similarly, the SARS-CoV-2 transcript positivity with respect to the total blood viral load was also significantly different (60% vs 8%).

By use of multivariable logistic regression, we found that age and sex were not associated with the distinction between a low and high viral RNA load status. Conversely, the number of comorbidities (odds ratio [OR] 1·61, 95% CI 1·14–2·49) and COVID vaccine doses (OR 0·36, 0·14–0·79) emerged as independent predictors of distinguishing between low and high viral RNA load status (appendix 2).

We found that viral and immune parameters, such as the antisense Orf1ab RNA concentrations and immunometabolism score, were also linked to the patient-reported anxiety or depression score. Individuals classified as having severe anxiety or depression (with a score of 4 and 5) displayed significantly higher antisense RNA concentrations and lower immunometabolism scores (p<0·05) than those categorised as mild (with scores of 1–3; figure D).

In conclusion, the associations among persistent viral RNA, immunometabolism, and patient-reported outcomes provide mechanistic insights for addressing the challenges posed by long COVID.

Source: Menezes SM, Jamoulle M, Carletto MP, Moens L, Meyts I, Maes P, Van Weyenbergh J. Blood transcriptomic analyses reveal persistent SARS-CoV-2 RNA and candidate biomarkers in post-COVID-19 condition. Lancet Microbe. 2024 Apr 24:S2666-5247(24)00055-7. doi: 10.1016/S2666-5247(24)00055-7. Epub ahead of print. PMID: 38677304. https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247(24)00055-7/fulltext (Full text)

Spontaneous, persistent, T cell-dependent IFN-γ release in patients who progress to Long Covid

Abstract:

After acute infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a proportion of patients experience persistent symptoms beyond 12 weeks, termed Long Covid. Understanding the mechanisms that cause this debilitating disease and identifying biomarkers for diagnostic, therapeutic, and monitoring purposes are urgently required.

We detected persistently high levels of interferon-γ (IFN-γ) from peripheral blood mononuclear cells of patients with Long Covid using highly sensitive FluoroSpot assays. This IFN-γ release was seen in the absence of ex vivo peptide stimulation and remains persistently elevated in patients with Long Covid, unlike the resolution seen in patients recovering from acute SARS-CoV-2 infection. The IFN-γ release was CD8+ T cell-mediated and dependent on antigen presentation by CD14+ cells.

Longitudinal follow-up of our study cohort showed that symptom improvement and resolution correlated with a decrease in IFN-γ production to baseline levels. Our study highlights a potential mechanism underlying Long Covid, enabling the search for biomarkers and therapeutics in patients with Long Covid.

Source: Krishna BA, Lim EY, Metaxaki M, Jackson S, Mactavous L; NIHR BioResource; Lyons PA, Doffinger R, Bradley JR, Smith KGC, Sinclair J, Matheson NJ, Lehner PJ, Sithole N, Wills MR. Spontaneous, persistent, T cell-dependent IFN-γ release in patients who progress to Long Covid. Sci Adv. 2024 Feb 23;10(8):eadi9379. doi: 10.1126/sciadv.adi9379. Epub 2024 Feb 21. PMID: 38381822; PMCID: PMC10881041. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881041/ (Full text)

SSRI Use During Acute COVID-19 Infection Associated with Lower Risk of Long COVID Among Patients with Depression

Abstract:

Background Long COVID, also known as post-acute sequelae of COVID-19 (PASC), is a poorly understood condition with symptoms across a range of biological domains that often have debilitating consequences. Some have recently suggested that lingering SARS-CoV-2 virus in the gut may impede serotonin production and that low serotonin may drive many Long COVID symptoms across a range of biological systems. Therefore, selective serotonin reuptake inhibitors (SSRIs), which increase synaptic serotonin availability, may prevent or treat Long COVID. SSRIs are commonly prescribed for depression, therefore restricting a study sample to only include patients with depression can reduce the concern of confounding by indication.

Methods In an observational sample of electronic health records from patients in the National COVID Cohort Collaborative (N3C) with a COVID-19 diagnosis between September 1, 2021, and December 1, 2022, and pre-existing major depressive disorder, the leading indication for SSRI use, we evaluated the relationship between SSRI use at the time of COVID-19 infection and subsequent 12-month risk of Long COVID (defined by ICD-10 code U09.9). We defined SSRI use as a prescription for SSRI medication beginning at least 30 days before COVID-19 infection and not ending before COVID-19 infection. To minimize bias, we estimated the causal associations of interest using a nonparametric approach, targeted maximum likelihood estimation, to aggressively adjust for high-dimensional covariates.

Results We analyzed a sample (n = 506,903) of patients with a diagnosis of major depressive disorder before COVID-19 diagnosis, where 124,928 (25%) were using an SSRI. We found that SSRI users had a significantly lower risk of Long COVID compared to nonusers (adjusted causal relative risk 0.90, 95% CI (0.86, 0.94)).

Conclusion These findings suggest that SSRI use during COVID-19 infection may be protective against Long COVID, supporting the hypothesis that serotonin may be a key mechanistic biomarker of Long COVID.

Source: Zachary Butzin-DozierYunwen JiSarang DeshpandeEric HurwitzJeremy CoyleJunming (Seraphina) ShiAndrew MertensMark J. van der LaanJohn M. Colford Jr.Rena C. PatelAlan E. Hubbardthe National COVID Cohort Collaborative (N3C) Consortium. SSRI Use During Acute COVID-19 Infection Associated with Lower Risk of Long COVID Among Patients with Depression.  

Repeated Hand Grip Strength is an Objective Marker for Disability and Severity of Key Symptoms in Post-COVID ME/CFS

Abstract:

Post-COVID Syndrome (PCS) refers to a diverse array of symptoms that persist beyond 3 months of the acute phase of a SARS-CoV-2 infection. The most frequent symptom is fatigue, which can manifest both mentally and physically. In this study, handgrip strength (HGS) parameters were determined as an objective measure of muscle fatigue and fatigability. HGS parameters were correlated with other frequent symptoms among 144 female PCS patients suffering from fatigue, exertional intolerance, and cognitive impairment.

Seventy-eight patients met the Canadian Consensus Criteria (CCC) for post-infectious myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The severity of disability and key symptoms were evaluated utilizing self-reported questionnaires.

Notably, patients diagnosed with ME/CFS exhibited a higher overall severity of symptoms, including lower physical function (p < 0.001), a greater degree of disability (p < 0.001), more severe fatigue (p < 0.001), post-exertional malaise (p < 0.001), and autonomic dysfunction (p = 0.004). While HGS was similarly impaired in both PCS and ME/CFS patients, the associations between HGS and the severity of symptoms and disability revealed striking differences.

We observed significant correlations of HGS parameters with physical function across all patients, but with the key symptoms PEM, fatigue, cognitive impairment, and autonomic dysfunction in ME/CFS patients only. This points to a common mechanism for these symptoms in the ME/CFS subtype, distinct from that in other types of PCS. Further HGS provides an objective marker of disease severity in ME/CFS.

Source: Anna Paffrath, Laura Kim, Claudia Kedor, Elisa Stein, Rebekka Rust, Helma Freitag, Uta Hoppmann, Leif G Hanitsch, Judith Bellmann-Strobl, Kirsten Wittke, Carmen Scheibenbogen, Franziska Sotzny. Repeated Hand Grip Strength is an Objective Marker for Disability and Severity of Key Symptoms in Post-COVID ME/CFS.
medRxiv 2024.01.25.24301776;  https://www.medrxiv.org/content/10.1101/2024.01.25.24301776v1 (Full text available as PDF file)

Neutrophil degranulation, endothelial and metabolic dysfunction in unvaccinated long COVID patients

Abstract:

Background: Long COVID symptoms are widely diffused and have a poorly understood pathophysiology, with possible involvement of inflammatory cytokines.

Materials and methods: A prospective follow-up study involved 385 unvaccinated patients, started 1 month after SARS-CoV-2 infection and continued for up to 12 months. We compared circulating biomarkers of neutrophil degranulation, endothelial and metabolic dysfunction in subjects with long COVID symptoms and in asymptomatic post-COVID controls.

Results: The highest occurrence of symptoms (71%) was after 3 months from the infection, decreasing to 62.3% and 29.4% at 6 and 12 months, respectively. Compared to controls, long COVID patients had increased levels of the neutrophilic degranulation indices MMP-8 and MPO, of endothelial dysfunction indices L-selectin and P-selectin. Among indices of metabolic dysfunction, leptin levels were higher in long COVID patients than in controls.

Conclusion: In unvaccinated patients, symptoms may persist up to 1 year after acute COVID infection, with increased indices of neutrophil degranulation, endothelial and metabolic dysfunction. The clinical implications of specific inflammatory biomarkers require further attention, especially in individuals with fatigue and long COVID-linked cognitive dysfunctions.

Source: Di Ciaula A, Liberale L, Portincasa P, Khalil M, Galerati I, Farella I, Noto A, JohnBritto S, Moriero M, Michelauz C, Frè F, Olivero C, Bertolotto M, Montecucco F, Carbone F, Bonfrate L. Neutrophil degranulation, endothelial and metabolic dysfunction in unvaccinated long COVID patients. Eur J Clin Invest. 2024 Jan 16:e14155. doi: 10.1111/eci.14155. Epub ahead of print. PMID: 38226472. https://pubmed.ncbi.nlm.nih.gov/38226472/

Metabolomic and immune alterations in long COVID patients with chronic fatigue syndrome

Introduction: A group of SARS-CoV-2 infected individuals present lingering symptoms, defined as long COVID (LC), that may last months or years post the onset of acute disease. A portion of LC patients have symptoms similar to myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), which results in a substantial reduction in their quality of life. A better understanding of the pathophysiology of LC, in particular, ME/CFS is urgently needed.

Methods: We identified and studied metabolites and soluble biomarkers in plasma from LC individuals mainly exhibiting ME/CFS compared to age-sex-matched recovered individuals (R) without LC, acute COVID-19 patients (A), and to SARS-CoV-2 unexposed healthy individuals (HC).

Results: Through these analyses, we identified alterations in several metabolomic pathways in LC vs other groups. Plasma metabolomics analysis showed that LC differed from the R and HC groups. Of note, the R group also exhibited a different metabolomic profile than HC. Moreover, we observed a significant elevation in the plasma pro-inflammatory biomarkers (e.g. IL-1α, IL-6, TNF-α, Flt-1, and sCD14) but the reduction in ATP in LC patients. Our results demonstrate that LC patients exhibit persistent metabolomic abnormalities 12 months after the acute COVID-19 disease. Of note, such metabolomic alterations can be observed in the R group 12 months after the acute disease. Hence, the metabolomic recovery period for infected individuals with SARS-CoV-2 might be long-lasting. In particular, we found a significant reduction in sarcosine and serine concentrations in LC patients, which was inversely correlated with depression, anxiety, and cognitive dysfunction scores.

Conclusion: Our study findings provide a comprehensive metabolomic knowledge base and other soluble biomarkers for a better understanding of the pathophysiology of LC and suggests sarcosine and serine supplementations might have potential therapeutic implications in LC patients. Finally, our study reveals that LC disproportionally affects females more than males, as evidenced by nearly 70% of our LC patients being female.

Source: Saito Suguru, Shahbaz Shima, Luo Xian, Osman Mohammed, Redmond Desiree, Cohen Tervaert Jan Willem, Li Liang, Elahi Shokrollah. Metabolomic and immune alterations in long COVID patients with chronic fatigue syndrome. Frontiers in Immunology, Vol 15, 2024. DOI=10.3389/fimmu.2024.1341843  https://www.frontiersin.org/articles/10.3389/fimmu.2024.1341843/full (Full text)

Blood transcriptomics reveal persistent SARS-CoV-2 RNA and candidate biomarkers in Long COVID patients

Abstract:

With an estimated 65 million individuals suffering from Long COVID, validated therapeutic strategies as well as non-invasive biomarkers are direly needed to guide clinical management. We used blood digital transcriptomics in search of viral persistence and Long COVID diagnostic biomarkers in a real-world, general practice-based setting with a long clinical follow-up.

We demonstrate systemic SARS-CoV-2 persistence for more than 2 years after acute COVID-19 infection. A 2-gene biomarker, including SARS-CoV-2 antisense RNA, correctly classifies Long COVID with 93.8% sensitivity and 91.7% specificity. Specific immune transcripts and immunometabolism score correlate to systemic viral load and patient-reported anxiety/depression, providing mechanistic links as well as therapeutic targets to tackle Long COVID.

Source: Soraya Maria MENEZES, MARC JAMOULLE, Maria P Carletto, Bram Van Holm, Leen Moens, Isabelle Meyts, Piet Maes, Johan Van Weyenbergh. Blood transcriptomics reveal persistent SARS-CoV-2 RNA and candidate biomarkers in Long COVID patients. medRxiv 2024.01.14.24301293; doi: https://doi.org/10.1101/2024.01.14.24301293 https://www.medrxiv.org/content/10.1101/2024.01.14.24301293v1 (Full text available as PDF file)