Sleep and circadian rhythm alterations in myalgic encephalomyelitis/chronic fatigue syndrome and post-COVID fatigue syndrome and its association with cardiovascular risk factors: A prospective cohort study

Abstract:

This study aimed to investigate circadian rhythm manifestations in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients (including a subpopulation of long-COVID patients) and matched healthy controls while also exploring their association with cardiovascular health variables.

Thirty-one ME/CFS patients (75% females), 23 individuals diagnosed with post-COVID ME/CFS (56% females) and 31 matched healthy controls (68% females) were enrolled in this study. Demographic and clinical characteristics were assessed using validated self-reported outcome measures. Actigraphy data, collected over one week, were used to analyze the 24-h profiles of wrist temperature, motor activity, and sleep circadian variables in the study participants. Associations between lipid profile with endothelial dysfunction biomarkers (such as endothelin-1, ICAM-1 and VCAM-1) and with sleep and circadian variables were also studied.

No differences were found in these variables between the two group of patients. Patients showed lower activity and worse sleep quality than matched healthy controls, together with a worse lipid profile than controls, that was associated with disturbances in the circadian temperature rhythm. ICAM-1 levels were associated with plasma lipids in healthy controls, but not in patients, who showed higher levels of endothelin-1 and VCAM-1.

These findings suggest that lipid profiles in ME/CFS are linked to disrupted circadian rhythms and sleep patterns, likely due to endothelial dysfunction. Furthermore, they highlight the intricate relationship between sleep, circadian rhythms, and cardiovascular health in this condition.

Source: Zerón-Rugerio MF, Zaragozá MC, Domingo JC, Sanmartín-Sentañes R, Alegre-Martin J, Castro-Marrero J, Cambras T. Sleep and circadian rhythm alterations in myalgic encephalomyelitis/chronic fatigue syndrome and post-COVID fatigue syndrome and its association with cardiovascular risk factors: A prospective cohort study. Chronobiol Int. 2024 Jul 22:1-12. doi: 10.1080/07420528.2024.2380020. Epub ahead of print. PMID: 39037125. https://pubmed.ncbi.nlm.nih.gov/39037125/

A Novel Fluorogenic Probe Reveals Lipid Droplet Dynamics in ME/CFS Fibroblasts

Abstract:

Lipid droplets (LDs) are dynamic cellular organelles that play an essential role in lipid metabolism and storage. LD dysregulation has been implicated in various diseases. However, investigations into the cellular LD dynamics under disease conditions have been rarely reported, possibly due to the absence of high performing LD imaging agents.

Here a novel fluorogenic probe, AM-QTPA, is reported for specific LD imaging. AM-QTPA demonstrates viscosity sensitivity and aggregation-induced emission enhancement characteristics. It is live cell permeable and can specifically light up LDs in cells, with low background noise and superior signals that can be quantified.

After validation in cell model with LD accumulation induced by oleic acid treatment, AM-QTPA is applied in a small proof-of-concept number of human fibroblast samples derived from people diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a complex and debilitating disease with unknown cause.

The results indicate the presence of larger but fewer LDs in ME/CFS fibroblasts compared to the healthy counterparts, accompanying with frequent LD-mitochondria contacts, suggesting potential upregulation of lipolysis in ME/CFS connective tissue like fibroblasts.

Overall, AM-QTPA provides new understanding of the anomalous LD dynamics in disease status, which, potentially, will facilitate in-depth investigation of the pathogenesis of ME/CFS.

Source: Ding, S., Sanislav, O., Missailidis, D., Allan, C.Y., Owyong, T.C., Wu, M.-Y., Chen, S., Fisher, P.R., Annesley, S.J. and Hong, Y. (2024), A Novel Fluorogenic Probe Reveals Lipid Droplet Dynamics in ME/CFS Fibroblasts. Adv. Sensor Res. 2300178. https://doi.org/10.1002/adsr.202300178 https://onlinelibrary.wiley.com/doi/full/10.1002/adsr.202300178 (Full text)

Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome

Highlights:

  • Plasmalogens (Pls) are lipids containing a vinyl-ether bond in their glycerol backbone.
  • Pls have antioxidant properties and are important for curved membrane assemblies.
  • Post-COVID-19 symptoms are highly prevalent and share several features with ME/CFS.
  • Pls depletion is a shared biological hallmark of ME/CFS and acute COVID-19 syndrome.
  • Pls replacement is a promising tool against neuroinflammation in these two conditions.

Abstract:

After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties (“brain fog”), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions.

Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms.

Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.

Source: Adriano Maia Chaves-Filho, Olivia Braniff, Angelina Angelova, Yuru Deng, Marie-Ève Tremblay. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Research Bulletin, Volume 201, September 2023, 110702. https://www.sciencedirect.com/science/article/pii/S0361923023001272 (Full text)

Chronic inflammation, neuroglia dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome

Highlights:

  • Plasmalogens (Pls) are lipids containing a vinyl-ether bond in their glycerol backbone
  • Pls have antioxidant properties and are important for curved membrane assemblies
  • Post-COVID-19 symptoms are highly prevalent and share several features with ME/CFS
  • Pls depletion is a shared biological hallmark of ME/CFS and acute COVID-19 syndrome
  • Pls replacement is a promising tool against neuroinflammation in these two conditions

Abstract:

After five waves of COVID-19 outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties (“brain fog”), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions.

Of great interest, recent evidence revealed a significant reduction of plasmalogens contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms.

Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.

Source: Chaves AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglia dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull. 2023 Jul 7:110702. doi: 10.1016/j.brainresbull.2023.110702. Epub ahead of print. PMID: 37423295. https://www.sciencedirect.com/science/article/pii/S0361923023001272?via%3Dihub (Full text)

Phenotypic characteristics of peripheral immune cells of Myalgic encephalomyelitis/chronic fatigue syndrome via transmission electron microscopy: A pilot study

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic multi-systemic disease characterized by extreme fatigue that is not improved by rest, and worsens after exertion, whether physical or mental. Previous studies have shown ME/CFS-associated alterations in the immune system and mitochondria.

We used transmission electron microscopy (TEM) to investigate the morphology and ultrastructure of unstimulated and stimulated ME/CFS immune cells and their intracellular organelles, including mitochondria. PBMCs from four participants were studied: a pair of identical twins discordant for moderate ME/CFS, as well as two age- and gender- matched unrelated subjects-one with an extremely severe form of ME/CFS and the other healthy.

TEM analysis of CD3/CD28-stimulated T cells suggested a significant increase in the levels of apoptotic and necrotic cell death in T cells from ME/CFS patients (over 2-fold). Stimulated Tcells of ME/CFS patients also had higher numbers of swollen mitochondria. We also found a large increase in intracellular giant lipid droplet-like organelles in the stimulated PBMCs from the extremely severe ME/CFS patient potentially indicative of a lipid storage disorder. Lastly, we observed a slight increase in platelet aggregation in stimulated cells, suggestive of a possible role of platelet activity in ME/CFS pathophysiology and disease severity.

These results indicate extensive morphological alterations in the cellular and mitochondrial phenotypes of ME/CFS patients’ immune cells and suggest new insights into ME/CFS biology.

Source: Jahanbani F, Maynard RD, Sing JC, Jahanbani S, Perrino JJ, Spacek DV, Davis RW, Snyder MP. Phenotypic characteristics of peripheral immune cells of Myalgic encephalomyelitis/chronic fatigue syndrome via transmission electron microscopy: A pilot study. PLoS One. 2022 Aug 9;17(8):e0272703. doi: 10.1371/journal.pone.0272703. PMID: 35943990. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272703 (Full text)

A global lipid map reveals host dependency factors conserved across SARS-CoV-2 variants

Abstract:

A comprehensive understanding of host dependency factors for SARS-CoV-2 remains elusive. Here, we map alterations in host lipids following SARS-CoV-2 infection using nontargeted lipidomics. We find that SARS-CoV-2 rewires host lipid metabolism, significantly altering hundreds of lipid species to effectively establish infection. We correlate these changes with viral protein activity by transfecting human cells with each viral protein and performing lipidomics.

We find that lipid droplet plasticity is a key feature of infection and that viral propagation can be blocked by small-molecule glycerolipid biosynthesis inhibitors. We find that this inhibition was effective against the main variants of concern (alpha, beta, gamma, and delta), indicating that glycerolipid biosynthesis is a conserved host dependency factor that supports this evolving virus.

Source: Farley SE, Kyle JE, Leier HC, Bramer LM, Weinstein JB, Bates TA, Lee JY, Metz TO, Schultz C, Tafesse FG. A global lipid map reveals host dependency factors conserved across SARS-CoV-2 variants. Nat Commun. 2022 Jun 17;13(1):3487. doi: 10.1038/s41467-022-31097-7. PMID: 35715395; PMCID: PMC9203258. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203258/ (Full text)