Mitochondrial DNA Missense Mutations ChrMT: 8981A > G and ChrMT: 6268C > T Identified in a Caucasian Female with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Triggered by the Epstein–Barr Virus

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystem disabling disease with unclear etiology and pathophysiology, whose typical symptoms include prolonged debilitating recovery from fatigue or postexertional malaise (PEM). Disrupted production of adenosine triphosphate (ATP), the intracellular energy that fuels cellular activity, is a cause for fatigue.

Here, we present a long-term case of ME/CFS: a 75-year-old Caucasian female patient, whose symptoms of ME/CFS were clearly triggered by an acute infection of the Epstein–Barr virus 24 years ago (mononucleosis). Before then, the patient was a healthy professional woman.

A recent DNA sequence analysis identified missense variants of mitochondrial respiratory chain enzymes, including ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V). Protein subunits ATP6 and Cox1 are encoded by mitochondrial DNA outside of the nucleus: the Cox1 gene encodes subunit 1 of complex IV (CIV: cytochrome c oxidase) and the ATP6 gene encodes subunit A of complex V (CV: ATP synthase). CIV and CV are the last two of five essential enzymes that perform the mitochondrial electron transport respiratory chain reaction to generate ATP.

Further analysis of the blood sample using transmission electron microscopy demonstrated abnormal, circulating, extracellular mitochondria. These results indicate that the patient had dysfunctional mitochondria, which may contribute directly to her major symptoms, including PEM and neurological and cognitive changes. Furthermore, the identified variants of ATP6 (ChrMT: 8981A > G; Q152R) and Cox1 (ChrMT: 6268C > T; A122V), functioning at a later stage of mitochondrial ATP production, may play a role in the abnormality of the patient’s mitochondria and the development of her ME/CFS symptoms.

Source: Gaoyan G. Tang-Siegel, David W. Maughan, Milah B. Frownfelter, Alan R. Light, “Mitochondrial DNA Missense Mutations ChrMT: 8981A > G and ChrMT: 6268C > T Identified in a Caucasian Female with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Triggered by the Epstein–Barr Virus”, Case Reports in Genetics, vol. 2024, Article ID 6475425, 10 pages, 2024. https://doi.org/10.1155/2024/6475425 https://www.hindawi.com/journals/crig/2024/6475425/ (Full text)

Neural Consequences of Post-Exertion Malaise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Post exertion malaise is one of the most debilitating aspects of Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome, yet the neurobiological consequences are largely unexplored. The objective of the study was to determine the neural consequences of acute exercise using functional brain imaging.

Fifteen female Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients and 15 healthy female controls completed 30 minutes of submaximal exercise (70% of peak heart rate) on a cycle ergometer. Symptom assessments (e.g. fatigue, pain, mood) and brain imaging data were collected one week prior to and 24 hours following exercise.

Functional brain images were obtained during performance of: 1) a fatiguing cognitive task – the Paced Auditory Serial Addition Task, 2) a non-fatiguing cognitive task – simple number recognition, and 3) a non-fatiguing motor task – finger tapping. Symptom and exercise data were analyzed using independent samples t-tests. Cognitive performance data were analyzed using mixed-model analysis of variance with repeated measures. Brain responses to fatiguing and non-fatiguing tasks were analyzed using linear mixed effects with cluster-wise (101-voxels) alpha of 0.05.

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients reported large symptom changes compared to controls (effect size ≥0.8, p<0.05). Patients and controls had similar physiological responses to exercise (p>0.05). However, patients exercised at significantly lower Watts and reported greater exertion and leg muscle pain (p<0.05).

For cognitive performance, a significant Group by Time interaction (p<0.05), demonstrated pre- to post-exercise improvements for controls and worsening for patients. Brain responses to finger tapping did not differ between groups at either time point. During number recognition, controls exhibited greater brain activity (p<0.05) in the posterior cingulate cortex, but only for the pre-exercise scan. For the Paced Serial Auditory Addition Task, there was a significant Group by Time interaction (p<0.05) with patients exhibiting increased brain activity from pre- to post-exercise compared to controls bilaterally for inferior and superior parietal and cingulate cortices.

Changes in brain activity were significantly related to symptoms for patients (p<0.05). Acute exercise exacerbated symptoms, impaired cognitive performance and affected brain function in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients.

These converging results, linking symptom exacerbation with brain function, provide objective evidence of the detrimental neurophysiological effects of post-exertion malaise.

Published by Elsevier Inc.

 

Source: Cook DB, Light AR, Light KC, Broderick G, Shields MR, Dougherty RJ, Meyer JD, VanRiper S, Stegner AJ, Ellingson LD, Vernon SD. Neural Consequences of Post-Exertion Malaise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Brain Behav Immun. 2017 Feb 16. pii: S0889-1591(17)30051-X. doi: 10.1016/j.bbi.2017.02.009. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/28216087

 

Gene Expression Factor Analysis to Differentiate Pathways Linked to Fibromyalgia, Chronic Fatigue Syndrome, and Depression in a Diverse Patient Sample

Abstract:

OBJECTIVE: To determine if independent candidate genes can be grouped into meaningful biologic factors, and whether these factors are associated with the diagnosis of chronic fatigue syndrome (CFS) and fibromyalgia syndrome (FMS), while controlling for comorbid depression, sex, and age.

METHODS: We included leukocyte messenger RNA gene expression from a total of 261 individuals, including healthy controls (n = 61), patients with FMS only (n = 15), with CFS only (n = 33), with comorbid CFS and FMS (n = 79), and with medication-resistant (n = 42) or medication-responsive (n = 31) depression. We used exploratory factor analysis (EFA) on 34 candidate genes to determine factor scores and regression analysis to examine whether these factors were associated with specific diagnoses.

RESULTS: EFA resulted in 4 independent factors with minimal overlap of genes between factors, explaining 51% of the variance. We labeled these factors by function as 1) purinergic and cellular modulators, 2) neuronal growth and immune function, 3) nociception and stress mediators, and 4) energy and mitochondrial function. Regression analysis predicting these biologic factors using FMS, CFS, depression severity, age, and sex revealed that greater expression in factors 1 and 3 was positively associated with CFS and negatively associated with depression severity (Quick Inventory for Depression Symptomatology score), but not associated with FMS.

CONCLUSION: Expression of candidate genes can be grouped into meaningful clusters, and CFS and depression are associated with the same 2 clusters, but in opposite directions, when controlling for comorbid FMS. Given high comorbid disease and interrelationships between biomarkers, EFA may help determine patient subgroups in this population based on gene expression.

© 2016, American College of Rheumatology.

 

Source: Iacob E, Light AR, Donaldson GW, Okifuji A, Hughen RW, White AT, Light KC. Gene Expression Factor Analysis to Differentiate Pathways Linked to Fibromyalgia, Chronic Fatigue Syndrome, and Depression in a Diverse Patient Sample. Arthritis Care Res (Hoboken). 2016 Jan;68(1):132-40. doi: 10.1002/acr.22639. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684820/ (Full article)

 

Differing leukocyte gene expression profiles associated with fatigue in patients with prostate cancer versus chronic fatigue syndrome

Abstract:

BACKGROUND: Androgen deprivation therapy (ADT) often worsens fatigue in patients with prostate cancer, producing symptoms similar to chronic fatigue syndrome (CFS). Comparing expression (mRNA) of many fatigue-related genes in patients with ADT-treated prostate cancer versus with CFS versus healthy controls, and correlating mRNA with fatigue severity may clarify the differing pathways underlying fatigue in these conditions.

METHODS: Quantitative real-time PCR was performed on leukocytes from 30 fatigued, ADT-treated prostate cancer patients (PCF), 39 patients with CFS and 22 controls aged 40-79, together with ratings of fatigue and pain severity. 46 genes from these pathways were included: (1) adrenergic/monoamine/neuropeptides, (2) immune, (3) metabolite-detecting, (4) mitochondrial/energy, (5) transcription factors.

RESULTS: PCF patients showed higher expression than controls or CFS of 2 immune transcription genes (NR3C1 and TLR4), chemokine CXCR4, and mitochondrial gene SOD2. They showed lower expression of 2 vasodilation-related genes (ADRB2 and VIPR2), 2 cytokines (TNF and LTA), and 2 metabolite-detecting receptors (ASIC3 and P2RX7). CFS patients showed higher P2RX7 and lower HSPA2 versus controls and PCF. Correlations with fatigue severity were similar in PCF and CFS for only DBI, the GABA-A receptor modulator (r=-0.50, p<0.005 and r=-0.34, p<0.05). Purinergic P2RY1 was correlated only with PCF fatigue and pain severity (r=+0.43 and +0.59, p=0.025 and p=0.001).

CONCLUSIONS: PCF patients differed from controls and CFS in mean expression of 10 genes from all 5 pathways. Correlations with fatigue severity implicated DBI for both patient groups and P2RY1 for PCF only. These pathways may provide new targets for interventions to reduce fatigue.

Copyright © 2013 Elsevier Ltd. All rights reserved.

 

Source: Light KC, Agarwal N, Iacob E, White AT, Kinney AY, VanHaitsma TA, Aizad H, Hughen RW, Bateman L, Light AR. Differing leukocyte gene expression profiles associated with fatigue in patients with prostate cancer versus chronic fatigue syndrome. Psychoneuroendocrinology. 2013 Dec;38(12):2983-95. doi: 10.1016/j.psyneuen.2013.08.008. Epub 2013 Sep 6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848711/ (Full article)

 

Differences in metabolite-detecting, adrenergic, and immune gene expression after moderate exercise in patients with chronic fatigue syndrome, patients with multiple sclerosis, and healthy controls

Abstract:

OBJECTIVE: Chronic fatigue syndrome (CFS) and multiple sclerosis (MS) are characterized by debilitating fatigue, yet evaluation of this symptom is subjective. We examined metabolite-detecting, adrenergic, and immune gene expression (messenger ribonucleic acid [mRNA]) in patients with CFS (n = 22) versus patients with MS (n = 20) versus healthy controls (n = 23) and determined their relationship to fatigue and pain before and after exercise.

METHODS: Blood samples and fatigue and pain ratings were obtained at baseline and 0.5, 8, 24, and 48 hours after sustained moderate exercise. Leukocyte mRNA of four metabolite-detecting receptors (acid-sensing ion channel 3, purinergic type 2X4 and 2X5 receptors, and transient receptor potential vanilloid type 1) and four adrenergic (α-2a, β-1, and β-2 receptors and catechol-O-methyltransferase) and five immune markers (CD14, toll-like receptor 4 [TLR4], interleukin [IL] 6, IL-10, and lymphotoxin α) was examined using quantitative polymerase chain reaction.

RESULTS: Patients with CFS had greater postexercise increases in fatigue and pain (10-29 points above baseline, p < .001) and greater mRNA increases in purinergic type 2X4 receptor, transient receptor potential vanilloid type 1, CD14, and all adrenergic receptors than controls (mean ± standard error = 1.3 ± 0.14- to 3.4 ± 0.90-fold increase above baseline, p = .04-.005). Patients with CFS with comorbid fibromyalgia (n = 18) also showed greater increases in acid-sensing ion channel 3 and purinergic type 2X5 receptors (p < .05). Patients with MS had greater postexercise increases than controls in β-1 and β-2 adrenergic receptor expressions (1.4 ± 0.27- and 1.3 ± 0.06-fold increases, respectively, p = .02 and p < .001) and greater decreases in TLR4 (p = .02). In MS, IL-10 and TLR4 decreases correlated with higher fatigue scores.

CONCLUSIONS: Postexercise mRNA increases in metabolite-detecting receptors were unique to patients with CFS, whereas both patients with MS and patients with CFS showed abnormal increases in adrenergic receptors. Among patients with MS, greater fatigue was correlated with blunted immune marker expression.

 

Source: White AT, Light AR, Hughen RW, Vanhaitsma TA, Light KC. Differences in metabolite-detecting, adrenergic, and immune gene expression after moderate exercise in patients with chronic fatigue syndrome, patients with multiple sclerosis, and healthy controls. Psychosom Med. 2012 Jan;74(1):46-54. doi: 10.1097/PSY.0b013e31824152ed. Epub 2011 Dec 30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256093/ (Full article)

 

Genetics and Gene Expression Involving Stress and Distress Pathways in Fibromyalgia with and without Comorbid Chronic Fatigue Syndrome

Abstract:

In complex multisymptom disorders like fibromyalgia syndrome (FMS) and chronic fatigue syndrome (CFS) that are defined primarily by subjective symptoms, genetic and gene expression profiles can provide very useful objective information.

This paper summarizes research on genes that may be linked to increased susceptibility in developing and maintaining these disorders, and research on resting and stressor-evoked changes in leukocyte gene expression, highlighting physiological pathways linked to stress and distress. These include the adrenergic nervous system, the hypothalamic-pituitary-adrenal axis and serotonergic pathways, and exercise responsive metabolite-detecting ion channels.

The findings to date provide some support for both inherited susceptibility and/or physiological dysregulation in all three systems, particularly for catechol-O-methyl transferase (COMT) genes, the glucocorticoid and the related mineralocorticoid receptors (NR3C1, NR3C2), and the purinergic 2X4 (P2X4) ion channel involved as a sensory receptor for muscle pain and fatigue and also in upregulation of spinal microglia in chronic pain models. Methodological concerns for future research, including potential influences of comorbid clinical depression and antidepressants and other medications, on gene expression are also addressed.

 

Source: Light KC, White AT, Tadler S, Iacob E, Light AR. Genetics and Gene Expression Involving Stress and Distress Pathways in Fibromyalgia with and without Comorbid Chronic Fatigue Syndrome. Pain Res Treat. 2012;2012:427869. doi: 10.1155/2012/427869. Epub 2011 Sep 29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3200121/ (Full article)

 

Myalgia and Fatigue: Translation from Mouse Sensory Neurons to Fibromyalgia and Chronic Fatigue Syndromes

Excerpt:

Muscle fatigue and pain are among the most common complaints at emergency rooms and clinics across the country. Fatigue and pain are often acute, remitting spontaneously or appearing to be attenuated by a variety of drugs and treatment modalities.

In spite of these remissions, popular magazines (e.g., Time) estimate that each year Americans spend over $30 billion on herbal remedies and $50 billion on alternative therapies to treat symptoms that include muscle pain and fatigue. These statistics indicate that even acute muscle pain and fatigue are serious health problems that are not adequately addressed by current medical practice. Occasionally, muscle pain and fatigue take on a chronic nature, leading to syndromes including chronic fatigue syndrome (CFS) and fibromyalgia syndrome (FMS)—devastating conditions characterized by continuing, debilitating fatigue, which is made worse by even mild exercise in the case of CFS and by chronic widespread pain (CWP) with a particular emphasis in the muscles, which can prevent most or all activities in the case of FMS.

Both of these conditions are frequently associated with each other and with a variety of other illnesses, such as temporomandibular disorder (TMD), irritable bowel syndrome (IBS), and multiple chemical sensitivity. These syndromes destroy lives, respond poorly to current treatment strategies, and can lead to exhaustion of the financial resources of afflicted patients. Together, these disorders affect 7 to 20 million people in the United States each year, as reported by various authorities (Reeves et al. 2007). Clearly, patients with these syndromes deserve a concerted research effort to understand, treat, and eventually cure these illnesses. In contrast to cutaneous pain, which has been thoroughly studied and is comparatively well understood, the molecular mechanisms for muscle pain are still unknown.

Even more enigmatic is the symptom of debilitating fatigue. Mosso, in his compendious volume on the subject a century ago, remarked that all cultures seem to have just one word for fatigue (Mosso 1904). Yet fatigue describes many conditions, including failure of muscle fibers to shorten normally, deficient motor command signals, feelings of tiredness, heaviness, pressure, and weakness from muscles, and a feeling of mental fatigue that impedes concentration and performance of conceptual tasks.

The subject of most physiological investigations of fatigue has been voluntary muscle contraction. Decreased function causing failure of voluntary muscle contraction can occur at all levels of the neuromuscular system, including the motor cortex, signaling to motoneurons, motoneuron signals to the muscle, excitation-contraction coupling in the muscle, and actin-myosin filament interactions. However, the most common failure is a decrease in the motor command signal from the motor cortex (see recent reports and reviews by Bellinger et al. 2008; Gibson et al. 2003; Noakes et al. 2005; St Clair and Noakes 2004).

A recent review suggests that failures in voluntary muscle contraction are most often caused by a central comparator that integrates homeostatic inputs from many physiological systems and shuts down motor commands when energy resources are threatened (Noakes 2007). One of the homeostatic inputs is suggested to “originate from a difference between subconscious representations of baseline physiological homeostatic state and the state of physiological activity induced by physical activity, which creates a second order representation which is perceived by consciousnessproducing structures as the sensation of fatigue” (Gibson et al. 2003, page 174).

We suggest that there is a simpler sensation of fatigue that is triggered by inputs from specific receptors that are sensitive to metabolites produced by muscle contraction. We further propose that this elementary sensation is transduced, conducted, and perceived within a unique sensory system with properties analogous to other sensory modalities such as pain. We call it the “sensation of muscle fatigue.”

Copyright © 2010 by Taylor and Francis Group, LLC.

 

Source: Light AR, Vierck CJ, Light KC. Myalgia and Fatigue: Translation from Mouse Sensory Neurons to Fibromyalgia and Chronic Fatigue Syndromes. In: Kruger L, Light AR, editors. Translational Pain Research: From Mouse to Man. Boca Raton, FL: CRC Press/Taylor & Francis; 2010. Chapter 11. Frontiers in Neuroscience. https://www.ncbi.nlm.nih.gov/books/NBK57253/ (Full chapter)

 

Myalgic encephalomyelitis: International Consensus Criteria

Abstract:

The label ‘chronic fatigue syndrome’ (CFS) has persisted for many years because of the lack of knowledge of the aetiological agents and the disease process. In view of more recent research and clinical experience that strongly point to widespread inflammation and multisystemic neuropathology, it is more appropriate and correct to use the term ‘myalgic encephalomyelitis’ (ME) because it indicates an underlying pathophysiology. It is also consistent with the neurological classification of ME in the World Health Organization’s International Classification of Diseases (ICD G93.3).

Consequently, an International Consensus Panel consisting of clinicians, researchers, teaching faculty and an independent patient advocate was formed with the purpose of developing criteria based on current knowledge. Thirteen countries and a wide range of specialties were represented. Collectively, members have approximately 400 years of both clinical and teaching experience, authored hundreds of peer-reviewed publications, diagnosed or treated approximately 50 000 patients with ME, and several members coauthored previous criteria. The expertise and experience of the panel members as well as PubMed and other medical sources were utilized in a progression of suggestions/drafts/reviews/revisions.

The authors, free of any sponsoring organization, achieved 100% consensus through a Delphi-type process. The scope of this paper is limited to criteria of ME and their application. Accordingly, the criteria reflect the complex symptomatology. Operational notes enhance clarity and specificity by providing guidance in the expression and interpretation of symptoms. Clinical and research application guidelines promote optimal recognition of ME by primary physicians and other healthcare providers, improve the consistency of diagnoses in adult and paediatric patients internationally and facilitate clearer identification of patients for research studies.

© 2011 The Association for the Publication of the Journal of Internal Medicine.

Comment in: A controversial consensus–comment on article by Broderick et al. [J Intern Med. 2012]

 

Source: Carruthers BM, van de Sande MI, De Meirleir KL, Klimas NG, Broderick G, Mitchell T, Staines D, Powles AC, Speight N, Vallings R, Bateman L, Baumgarten-Austrheim B, Bell DS, Carlo-Stella N, Chia J, Darragh A, Jo D, Lewis D, Light AR, Marshall-Gradisbik S, Mena I, Mikovits JA, Miwa K, Murovska M, Pall ML, Stevens S. Myalgic encephalomyelitis: International Consensus Criteria. J Intern Med. 2011 Oct;270(4):327-38. doi: 10.1111/j.1365-2796.2011.02428.x. Epub 2011 Aug 22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427890/ (Full article)

 

Evidence for a heritable predisposition to Chronic Fatigue Syndrome

Abstract:

BACKGROUND: Chronic Fatigue Syndrome (CFS) came to attention in the 1980s, but initial investigations did not find organic causes. Now decades later, the etiology of CFS has yet to be understood, and the role of genetic predisposition in CFS remains controversial. Recent reports of CFS association with the retrovirus xenotropic murine leukemic virus-related virus (XMRV) or other murine leukemia related retroviruses (MLV) might also suggest underlying genetic implications within the host immune system.

METHODS: We present analyses of familial clustering of CFS in a computerized genealogical resource linking multiple generations of genealogy data with medical diagnosis data of a large Utah health care system. We compare pair-wise relatedness among cases to expected relatedness in the Utah population, and we estimate risk for CFS for first, second, and third degree relatives of CFS cases.

RESULTS: We observed significant excess relatedness of CFS cases compared to that expected in this population. Significant excess relatedness was observed for both close (p <0.001) and distant relationships (p = 0.010). We also observed significant excess CFS relative risk among first (2.70, 95% CI: 1.56-4.66), second (2.34, 95% CI: 1.31-4.19), and third degree relatives (1.93, 95% CI: 1.21-3.07).

CONCLUSIONS: These analyses provide strong support for a heritable contribution to predisposition to Chronic Fatigue Syndrome. A population of high-risk CFS pedigrees has been identified, the study of which may provide additional understanding.

 

Source: Albright F, Light K, Light A, Bateman L, Cannon-Albright LA. Evidence for a heritable predisposition to Chronic Fatigue Syndrome. BMC Neurol. 2011 May 27;11:62. doi: 10.1186/1471-2377-11-62. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128000/ (Full article)

 

Gene expression alterations at baseline and following moderate exercise in patients with Chronic Fatigue Syndrome and Fibromyalgia Syndrome

Abstract:

OBJECTIVES: To determine mRNA expression differences in genes involved in signalling and modulating sensory fatigue, and muscle pain in patients with chronic fatigue syndrome (CFS) and fibromyalgia syndrome (FM) at baseline, and following moderate exercise.

DESIGN: Forty-eight patients with CFS only, or CFS with comorbid FM, 18 patients with FM that did not meet criteria for CFS, and 49 healthy controls underwent moderate exercise (25 min at 70% maximum age-predicted heart rate). Visual-analogue measures of fatigue and pain were taken before, during and after exercise. Blood samples were taken before and 0.5, 8, 24 and 48 h after exercise. Leucocytes were immediately isolated from blood, number coded for blind processing and analyses and flash frozen. Using real-time, quantitative PCR, the amount of mRNA for 13 genes (relative to control genes) involved in sensory, adrenergic and immune functions was compared between groups at baseline and following exercise. Changes in amounts of mRNA were correlated with behavioural measures and functional clinical assessments.

RESULTS: No gene expression changes occurred following exercise in controls. In 71% of patients with CFS, moderate exercise increased most sensory and adrenergic receptor’s and one cytokine gene’s transcription for 48 h. These postexercise increases correlated with behavioural measures of fatigue and pain. In contrast, for the other 29% of patients with CFS, adrenergic α-2A receptor’s transcription was decreased at all time-points after exercise; other genes were not altered. History of orthostatic intolerance was significantly more common in the α-2A decrease subgroup. FM-only patients showed no postexercise alterations in gene expression, but their pre-exercise baseline mRNA for two sensory ion channels and one cytokine were significantly higher than controls.

CONCLUSIONS: At least two subgroups of patients with CFS can be identified by gene expression changes following exercise. The larger subgroup showed increases in mRNA for sensory and adrenergic receptors and a cytokine. The smaller subgroup contained most of the patients with CFS with orthostatic intolerance, showed no postexercise increases in any gene and was defined by decreases in mRNA for α-2A. FM-only patients can be identified by baseline increases in three genes. Postexercise increases for four genes meet published criteria as an objective biomarker for CFS and could be useful in guiding treatment selection for different subgroups.

© 2011 The Association for the Publication of the Journal of Internal Medicine.

 

Source: Light AR, Bateman L, Jo D, Hughen RW, Vanhaitsma TA, White AT, Light KC. Gene expression alterations at baseline and following moderate exercise in patients with Chronic Fatigue Syndrome and Fibromyalgia Syndrome. J Intern Med. 2012 Jan;271(1):64-81. doi: 10.1111/j.1365-2796.2011.02405.x. Epub 2011 Jul 13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175315/ (Full article)