Muscular metabolic plasticity in 3D in vitro models against systemic stress factors in ME/CFS and long COVID-19

Abstract:

Myalgic encephalomyelities/ chronic fatigue syndrome and long COVID-19 are clinically challenging, multi-symptomatic conditions with multiple overlapping symptoms. Unfortunately, contemporary research is directly being done on patients which risks exacerbating their symptoms. Using our 3-D in vitro skeletal muscle tissues we have mapped the progression of functional, physiological, and metabolic adaptations of the tissues in response to patient sera over time.

During short exposure we treated the tissues for 48 hours with patient sera. The contractile profiles of these tissues were severely compromised. Transcriptomic analyses of these short exposure samples showed an absence of significant differentially expressed genes between ME/CFS and LC-19. The analyses revealed an upregulation of glycolytic enzymes especially of PDK4, suggesting a switch away from Oxidative Phosphorylation as well as a decline in DRP1, involved in mitochondrial fission.

Subsequent structural analyses confirmed hypertrophy in myotubes and hyperfused mitochondrial networks. Mitochondrial oxygen consumption capacity, evaluated through the MitoStress test, was also elevated, as was the non-mitochondrial respiration confirming the shift to glycolysis.

Interestingly, at short exposures of 48 hours, the muscle tissues appeared to be adapting to the stress factors by upregulating glycolysis and increasing the muscular metabolic volume. Prolonging the exposure to 96 and 144 hours induced high fatiguability, and fragility in tissues. The mitochondria, at longer exposures, appeared to be fragmented and assumed a toroidal conformation indicating a change in mitochondrial membrane potential.

We hypothesize that the disease progresses through an intermediary stress-induced hypermetabolic state, ultimately leading to severe deterioration of muscle function. This is the first account of research that proposes acquired metabolic plasticity in 3D skeletal muscles exposed to ME/CFS and Long COVID-19 sera.

Source: S. Mughal, F. Andújar-Sánchez, M. Sabater-Arcis, J. Fernández-Costa, J. Ramón-Azcón. 571P Muscular metabolic plasticity in 3D in vitro models against systemic stress factors in ME/CFS and long COVID-19. Neuromuscular Disorders, Volume 43, Supplement 1, October 2024, 104441.162. https://www.sciencedirect.com/science/article/abs/pii/S0960896624003353

Transcriptional reprogramming from innate immune functions to a pro-thrombotic signature by monocytes in COVID-19

Abstract:

Although alterations in myeloid cells have been observed in COVID-19, the specific underlying mechanisms are not completely understood. Here, we examine the function of classical CD14+ monocytes in patients with mild and moderate COVID-19 during the acute phase of infection and in healthy individuals.

Monocytes from COVID-19 patients display altered expression of cell surface receptors and a dysfunctional metabolic profile that distinguish them from healthy monocytes. Secondary pathogen sensing ex vivo leads to defects in pro-inflammatory cytokine and type-I IFN production in moderate COVID-19 cases, together with defects in glycolysis.

COVID-19 monocytes switch their gene expression profile from canonical innate immune to pro-thrombotic signatures and are functionally pro-thrombotic, both at baseline and following ex vivo stimulation with SARS-CoV-2. Transcriptionally, COVID-19 monocytes are characterized by enrichment of pathways involved in hemostasis, immunothrombosis, platelet aggregation and other accessory pathways to platelet activation and clot formation. These results identify a potential mechanism by which monocyte dysfunction may contribute to COVID-19 pathology.

Source: Maher AK, Burnham KL, Jones EM, Tan MMH, Saputil RC, Baillon L, Selck C, Giang N, Argüello R, Pillay C, Thorley E, Short CE, Quinlan R, Barclay WS, Cooper N, Taylor GP, Davenport EE, Dominguez-Villar M. Transcriptional reprogramming from innate immune functions to a pro-thrombotic signature by monocytes in COVID-19. Nat Commun. 2022 Dec 26;13(1):7947. doi: 10.1038/s41467-022-35638-y. PMID: 36572683; PMCID: PMC9791976. https://www.nature.com/articles/s41467-022-35638-y (Full text)

Understanding Long COVID; Mitochondrial Health and Adaptation—Old Pathways, New Problems

Abstract:

Many people infected with the SARS-CoV-2 suffer long-term symptoms, such as “brain fog”, fatigue and clotting problems. Explanations for “long COVID” include immune imbalance, incomplete viral clearance and potentially, mitochondrial dysfunction. As conditions with sub-optimal mitochondrial function are associated with initial severity of the disease, their prior health could be key in resistance to long COVID and recovery.
The SARs virus redirects host metabolism towards replication; in response, the host can metabolically react to control the virus. Resolution is normally achieved after viral clearance as the initial stress activates a hormetic negative feedback mechanism. It is therefore possible that, in some individuals with prior sub-optimal mitochondrial function, the virus can “tip” the host into a chronic inflammatory cycle. This might explain the main symptoms, including platelet dysfunction.
Long COVID could thus be described as a virally induced chronic and self-perpetuating metabolically imbalanced non-resolving state characterised by mitochondrial dysfunction, where reactive oxygen species continually drive inflammation and a shift towards glycolysis. This would suggest that a sufferer’s metabolism needs to be “tipped” back using a stimulus, such as physical activity, calorie restriction, or chemical compounds that mimic these by enhancing mitochondrial function, perhaps in combination with inhibitors that quell the inflammatory response.
Source: Nunn AVW, Guy GW, Brysch W, Bell JD. Understanding Long COVID; Mitochondrial Health and Adaptation—Old Pathways, New Problems. Biomedicines. 2022; 10(12):3113. https://doi.org/10.3390/biomedicines10123113 https://www.mdpi.com/2227-9059/10/12/3113 (Full text)

Dysregulated Provision of Oxidisable Substrates to the Mitochondria in ME/CFS Lymphoblasts

Abstract:

Although understanding of the biomedical basis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is growing, the underlying pathological mechanisms remain uncertain. We recently reported a reduction in the proportion of basal oxygen consumption due to ATP synthesis by Complex V in ME/CFS patient-derived lymphoblast cell lines, suggesting mitochondrial respiratory inefficiency. This was accompanied by elevated respiratory capacity, elevated mammalian target of rapamycin complex 1 (mTORC1) signaling activity and elevated expression of enzymes involved in the TCA cycle, fatty acid β-oxidation and mitochondrial transport. These and other observations led us to hypothesise the dysregulation of pathways providing the mitochondria with oxidisable substrates.

In our current study, we aimed to revisit this hypothesis by applying a combination of whole-cell transcriptomics, proteomics and energy stress signaling activity measures using subsets of up to 34 ME/CFS and 31 healthy control lymphoblast cell lines from our growing library. While levels of glycolytic enzymes were unchanged in accordance with our previous observations of unaltered glycolytic rates, the whole-cell proteomes of ME/CFS lymphoblasts contained elevated levels of enzymes involved in the TCA cycle (p = 1.03 × 10-4), the pentose phosphate pathway (p = 0.034, G6PD p = 5.5 × 10-4), mitochondrial fatty acid β-oxidation (p = 9.2 × 10-3), and degradation of amino acids including glutamine/glutamate (GLS p = 0.034, GLUD1 p = 0.048, GOT2 p = 0.026), branched-chain amino acids (BCKDHA p = 0.028, BCKDHB p = 0.031) and essential amino acids (FAH p = 0.036, GCDH p = 0.006). The activity of the major cellular energy stress sensor, AMPK, was elevated but the increase did not reach statistical significance. The results suggest that ME/CFS metabolism is dysregulated such that alternatives to glycolysis are more heavily utilised than in controls to provide the mitochondria with oxidisable substrates.

Source: Missailidis D, Sanislav O, Allan CY, Smith PK, Annesley SJ, Fisher PR. Dysregulated Provision of Oxidisable Substrates to the Mitochondria in ME/CFS Lymphoblasts. Int J Mol Sci. 2021 Feb 19;22(4):2046. doi: 10.3390/ijms22042046. PMID: 33669532; PMCID: PMC7921983. https://www.mdpi.com/1422-0067/22/4/2046/htm (Full text)

The effect of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) severity on cellular bioenergetic function

Abstract:

Myalgic encephalomyelitis/ Chronic fatigue syndrome (ME/CFS) has been associated with abnormalities in mitochondrial function. In this study we have analysed previous bioenergetics data in peripheral blood mononuclear cells (PBMCs) using new techniques in order to further elucidate differences between ME/CFS and healthy control cohorts. We stratified our ME/CFS cohort into two individual cohorts representing moderately and severely affected patients in order to determine if disease severity is associated with bioenergetic function in PBMCs.

Both ME/CFS cohorts showed reduced mitochondrial function when compared to a healthy control cohort. This shows that disease severity does not correlate with mitochondrial function and even those with a moderate form of the disease show evidence of mitochondrial dysfunction. Equations devised by another research group have enabled us to calculate ATP-linked respiration rates and glycolytic parameters. Parameters of glycolytic function were calculated by taking into account respiratory acidification.

This revealed severely affected ME/CFS patients to have higher rates of respiratory acidification and showed the importance of accounting for respiratory acidification when calculating parameters of glycolytic function. Analysis of previously published glycolysis data, after taking into account respiratory acidification, showed severely affected patients have reduced glycolysis compared to moderately affected patients and healthy controls. Rates of ATP-linked respiration were also calculated and shown to be lower in both ME/CFS cohorts.

This study shows that severely affected patients have mitochondrial and glycolytic impairments, which sets them apart from moderately affected patients who only have mitochondrial impairment. This may explain why these patients present with a more severe phenotype.

Source: Tomas C, Elson JL, Strassheim V, Newton JL, Walker M. The effect of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) severity on cellular bioenergetic function. PLoS One. 2020 Apr 10;15(4):e0231136. doi: 10.1371/journal.pone.0231136. eCollection 2020. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231136 (Full study)

Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease with no known cause or mechanism. There is an increasing appreciation for the role of immune and metabolic dysfunction in the disease. ME/CFS has historically presented in outbreaks, often has a flu-like onset, and results in inflammatory symptoms. Patients suffer from severe fatigue and post-exertional malaise. There is little known about the metabolism of specific immune cells in ME/CFS patients. To investigate immune metabolism in ME/CFS, we isolated CD4+ and CD8+ T cells from 53 ME/CFS patients and 45 healthy controls. We analyzed glycolysis and mitochondrial respiration in resting and activated T cells, along with markers related to cellular metabolism, and plasma cytokines.

We found that ME/CFS CD8+ T cells have reduced mitochondrial membrane potential compared to healthy controls. Both CD4+ and CD8+ T cells from ME/CFS patients had reduced glycolysis at rest, while CD8+ T cells also had reduced glycolysis following activation. ME/CFS patients had significant correlations between measures of T cell metabolism and plasma cytokine abundance that differed from healthy control subjects.

Our data indicate that patients have impaired T cell metabolism consistent with ongoing immune alterations in ME/CFS that may illuminate the mechanism behind this disease.

Source: Mandarano AH, Maya J, Giloteaux L, Peterson DL, Maynard M, Gottschalk CG, Hanson MR. Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations. J Clin Invest. 2019 Dec 12. pii: 132185. doi: 10.1172/JCI132185. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/31830003

Study finds differences in energy use by immune cells in ME/CFS

Press Release: New findings published in the Journal of Clinical Investigation suggest that specific immune T cells from people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) show disruptions in the way they produce energy. The research was supported by the National Institutes of Health.

“This research gives us additional evidence for the role of the immune system in ME/CFS and may provide important clues to help us understand the mechanisms underlying this devastating disease,” said Vicky Whittemore, Ph.D., program director at NIH’s National Institute of Neurological Disorders and Stroke (NINDS), which partially funded the study.

ME/CFS is a severe, chronic, and debilitating disease that can cause a range of symptoms including pain, severe exhaustion, cognitive impairment, and post-exertional malaise, the worsening of symptoms after physical or mental activity. Estimates suggest that between 836,000 and 2.5 million people in the United States may be affected by ME/CFS. It is unknown what causes the disease and there are no treatments.

Research by Alexandra Mandarano and collaborators in the laboratory of Maureen Hanson, Ph.D., professor of molecular biology and genetics at Cornell University in Ithaca, New York, examined biochemical reactions involved in energy production, or metabolism, in two specific types of immune cells obtained from 45 healthy controls and 53 people with ME/CFS. Investigators focused on CD4 T cells, which alert other immune cells about invading pathogens, and CD8 T cells, which attack infected cells. Dr. Hanson’s team used state-of-the-art methods to look at energy production by the mitochondria within T cells, when the cells were in a resting state and after they had been activated. Mitochondria are biological powerhouses and create most of the energy that drives cells.

Dr. Hanson and her colleagues did not see significant differences in mitochondrial respiration, the cell’s primary energy-producing method, between healthy and ME/CFS cells at rest or after activation. However, results suggest that glycolysis, a less efficient method of energy production, may be disrupted in ME/CFS. Compared to healthy cells, CD4 and CD8 cells from people with ME/CFS had decreased levels of glycolysis at rest. In addition, ME/CFS CD8 cells had lower levels of glycolysis after activation.

“Our work demonstrates the importance of looking at particular types of immune cells that have different jobs to do, rather than looking at them all mixed together, which can hide problems specific to particular cells,” said Dr. Hanson. “Additional studies focusing on specific cell types will be important to unravel what’s gone wrong with immune defenses in ME/CFS.”

Dr. Hanson’s group also looked at mitochondrial size and membrane potential, which can indicate the health of T cell mitochondria. CD4 cells from healthy controls and people with ME/CFS showed no significant differences in mitochondrial size nor function. CD8 cells from people with ME/CFS showed decreased membrane potential compared to healthy cells during both resting and activated states.

Dr. Hanson’s team examined associations between cytokines, chemical messengers that send instructions from one cell to another, and T cell metabolism. The findings revealed different, and often opposite, patterns between healthy and ME/CFS cells, suggesting changes in the immune system. In addition, the presence of cytokines that cause inflammation unexpectedly correlated with decreased metabolism in T cells.

This study was supported in part by the NIH’s ME/CFS Collaborative Research Network, a consortium supported by multiple institutes and centers at NIH, consisting of three collaborative research centers and a data management coordinating center. The research network was established in 2017 to help advance research on ME/CFS.

“In addition to providing valuable insights into the immunology of ME/CFS, we hope that the results coming out of the collaborative research network will inspire more researchers, particularly those in the early stages of their careers, to work on this disease,” said Joseph Breen, Ph.D., section chief, Immunoregulation Section, Basic Immunology Branch, National Institute of Allergy and Infectious Diseases (NIAID), which partially funded the study.

Future research studies will examine metabolism in other subsets of immune cells. In addition, researchers will investigate ways in which changes in metabolism affect the activity of T cells.

This study was supported by NINDS grant U54NS105541, NIAID grant R21AI117595, Simmaron Research, and an anonymous private donor.

NINDS (https://www.ninds.nih.gov/) is the nation’s leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIH…Turning Discovery Into Health®

Reference: Mandarano et al. “Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations,” Journal of Clinical Investigation. December 12, 2019

Reduced glycolytic reserve in isolated natural killer cells from Myalgic encephalomyelitis/chronic fatigue syndrome patients: A preliminary investigation

Abstract:

BACKGROUND: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is medically unexplained post-exertional fatigue associated with significant reduction in natural killer cell (NK) cytotoxicity activity. Cytotoxic activity relies on glycolytic flux and mitochondrial respiration to fulfill energetic cellular demands. While mitochondrial dysfunction has been reported in ME/CFS patients, no previous investigation has examined the bioenergetic profile of isolated NK cells from ME/CFS patients.

OBJECTIVE: This study was to determine the metabolic function in resting NK cells from ME/CFS patients.

METHOD: Six ME/CFS patients (aged 50.33±4.95) were age and sex-matched with non-fatigued healthy controls (aged 50.00±5.04). Mitochondrial stress tests measured parameters of mitochondrial function in the NK cells including basal respiration, ATP production, proton leak, maximal respiration, spare respiratory capacity and bioenergetic health index. Glycolytic stress tests measured parameters of glycolytic function such as glycolytic reserve, glycolysis and glycolytic capacity in isolated NK cells from ME/CFS patients and healthy controls using an extracellular flux analyzer, Seahorse XFp.

RESULT: There was a significant reduction of glycolytic reserve in resting NK cells from ME/CFS patients (0.6±0.07 mpH/ min) compared with healthy control (2.25±1.3 mpH/min). Mitochondrial respiration in resting NK cells did not approach statistical significance between ME/CFS patients and healthy controls.

CONCLUSION: These findings suggest resting NK cells from ME/CFS patients have reduced ability to increase glycolytic flux to respond to high energetic demands for ATP production. Hence, the reduced glycolytic reserves we have identified in isolated resting isolated NK cells should be further investigated to assist in understanding ME/CFS pathogenesis.

Source: Nguyen T, Staines D, Johnston S, Marshall-Gradisnik S. Reduced glycolytic reserve in isolated natural killer cells from Myalgic encephalomyelitis/chronic fatigue syndrome patients: A preliminary investigation. Asian Pac J Allergy Immunol. 2018 Jul 8. doi: 10.12932/AP-011117-0188. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/29981562

Elevated Energy Production in Chronic Fatigue Syndrome Patients

Abstract:

Chronic Fatigue Syndrome (CFS) is a debilitating disease characterized by physical and mental exhaustion. The underlying pathogenesis is unknown, but impairments in certain mitochondrial functions have been found in some CFS patients. To thoroughly reveal mitochondrial deficiencies in CFS patients, here we examine the key aspects of mitochondrial function in blood cells from a paired CFS patient-control series. Surprisingly, we discover that in patients the ATP levels are higher and mitochondrial cristae are more condensed compared to their paired controls, while the mitochondrial crista length, mitochondrial size, shape, density, membrane potential, and enzymatic activities of the complexes in the electron transport chain remain intact. We further show that the increased ATP largely comes from non-mitochondrial sources. Our results indicate that the fatigue symptom in this cohort of patients is unlikely caused by lack of ATP and severe mitochondrial malfunction. On the contrary, it might be linked to a pathological mechanism by which more ATP is produced by non-mitochondrial sources.

 

Source: Lawson N, Hsieh CH, March D, Wang X. Elevated Energy Production in Chronic Fatigue Syndrome Patients. J Nat Sci. 2016;2(10). pii: e221. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5065105/ (Full article)

 

Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

The objectives of this study are to test the hypothesis that the fatigue and accompanying symptoms of Chronic Myalgic Encephalomyelitis/Fatigue Syndrome are in part due to defects in energy provision at the cellular level, and to understand the pathophysiology of the defects so that effective medical intervention can be implemented.

We performed an audit of 138 patients (ages 18-65) diagnosed with ME/CFS and attending a private practice. The patients and 53 normal, healthy controls had the ATP Profile test carried out on neutrophils from a 3-ml venous blood sample. This test yields 6 numerical factors that describe the availability of ATP and the efficiency of oxidative phosphorylation in mitochondria. Other biomedical measurements, including the concentration of cell-free DNA in plasma, were made. The results of the audit are compared with the controls and a previous cohort of 61 patients. We find that all patients tested have measureable mitochondrial dysfunction which correlates with the severity of the illness.

The patients divide into two main groups differentiated by how cellular metabolism attempts to compensate for the dysfunction. Comparisons with exercise studies suggest that the dysfunction in neutrophils also occurs in other cells. This is confirmed by the cell-free DNA measurements which indicate levels of tissue damage up to 3.5 times the normal reference range. The major immediate causes of the dysfunction are lack of essential substrates and partial blocking of the translocator protein sites in mitochondria. The ATP Profile is a valuable diagnostic tool for the clinical management of ME/CFS.

 

Source: Booth NE, Myhill S, McLaren-Howard J. Mitochondrial dysfunction and the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Int J Clin Exp Med. 2012;5(3):208-20. Epub 2012 Jun 15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403556/ (Full article)