Altered Pain in the Brainstem and Spinal Cord of Fibromyalgia Patients During the Anticipation and Experience of Experimental Pain

Abstract:

Chronic pain associated with fibromyalgia (FM) affects a large portion of the population but the underlying mechanisms leading to this altered pain are still poorly understood. Evidence suggests that FM involves altered neural processes in the central nervous system and neuroimaging methods such as functional magnetic resonance imaging (fMRI) are used to reveal these underlying alterations. While many fMRI studies of FM have been conducted in the brain, recent evidence shows that the changes in pain processing in FM may be linked to autonomic and homeostatic dysregulation, thus requiring further investigation in the brainstem and spinal cord.

Functional magnetic resonance imaging data from 15 women with FM and 15 healthy controls were obtained in the cervical spinal cord and brainstem at 3 tesla using previously established methods. In order to investigate differences in pain processing in these groups, participants underwent trials in which they anticipated and received a predictable painful stimulus, randomly interleaved with trials with no stimulus. Differences in functional connectivity between the groups were investigated by means of structural equation modeling.

The results demonstrate significant differences in brainstem/spinal cord network connectivity between the FM and control groups which also correlated with individual differences in pain responses. The regions involved in these differences in connectivity included the LC, hypothalamus, PAG, and PBN, which are known to be associated with autonomic homeostatic regulation, including fight or flight responses. This study extends our understanding of altered neural processes associated with FM and the important link between sensory and autonomic regulation systems in this disorder.

Source: Ioachim G, Warren HJM, Powers JM, Staud R, Pukall CF, Stroman PW. Altered Pain in the Brainstem and Spinal Cord of Fibromyalgia Patients During the Anticipation and Experience of Experimental Pain. Front Neurol. 2022 May 6;13:862976. doi: 10.3389/fneur.2022.862976. PMID: 35599729; PMCID: PMC9120571. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120571/ (Full text)

The impact of Micro RNA-320a serum level on severity of symptoms and cerebral processing of pain in patients with fibromyalgia

Abstract:

Objectives: The aim of this work was to explore the expression of miR-320a level in fibromyalgia patients in comparison to healthy controls, and to clarify its impact on the severity of symptoms and the cerebral processing of pain assessed by middle latency somatosensory evoked potentials (SSEPs).

Design: Case-control study.

Setting: Rheumatology and Neurology outpatient clinics.

Subjects: Seventy-four fibromyalgia patients and seventy-four normal healthy controls.

Methods: The included patients were subjected to detailed history taking, assessment of severity of fibromyalgia symptoms using the Fibromyalgia Impact Questionnaire Revised (FIQR), assessment of pain intensity using the Neuropathic Pain Symptom Inventory (NPSI), measurement of the serum level of miR-320a in addition to of measurement peak latencies and amplitudes of middle latency SSEPs.

Results: Fibromyalgia patients had significantly higher micro-RNA-320a levels (0.907 ± 0.022) in comparison to controls (0.874 ± 0.015) (P-value < 0.001). The mean values of micro-RNA-320a levels were significantly higher in fibromyalgia patients with insomnia, chronic fatigue syndrome, persistent depressive disorder, and primary headache disorder than those without (P-value = 0.024, <0.001, 0.006, 0.036 respectively). There were statistically significant positive correlations between micro-RNA-320a levels, and disease duration, FIQR and NPSI total scores (P-value <0.001, 0.003, 0.002 respectively). There were no statistically significant correlations between micro-RNA-320a levels and middle latency SSEPs.

Discussion: Micro-RNA-320a level is significantly upregulated in fibromyalgia patient. It has a crucial impact on the severity of symptoms but not related to the cerebral processing of pain.

Source: Hussein M, Fathy W, Abdelaleem EA, Nasser M, Yehia A, Elanwar R. The impact of Micro RNA-320a serum level on severity of symptoms and cerebral processing of pain in patients with fibromyalgia. Pain Med. 2022 May 19:pnac076. doi: 10.1093/pm/pnac076. Epub ahead of print. PMID: 35587745. https://pubmed.ncbi.nlm.nih.gov/35587745/

New Clinical Phenotype of the Post-Covid Syndrome: Fibromyalgia and Joint Hypermobility Condition

Abstract:

Fibromyalgia can be defined as a chronic pain condition, affecting the musculoskeletal system, etiology and pathophysiology of which is sufficiently understudied. Despite the fact that many authors consider this entity to be a manifestation of central sensitization, and not an autoimmune disease, the high prevalence of fibromyalgia in patients with post-COVID-19 conditions requires taking a fresh look at the causes of the disease development.

During the patient examination, the authors identified a combination of symptoms that occurs so often, that they can be carefully described as a clinical pattern. These manifestations include young age, female gender, joint hypermobility, the onset of pain after COVID-19, physical traumatization of one particular tendon and the development of the fibromyalgia pain syndrome during the next several weeks. As well as an increase in the titer of antinuclear antibodies and some other systemic inflammation factors. It can be assumed with great caution that local damage to the connective tissue in patients with joint hypermobility, having COVID-19 as a trigger factor can lead to the development of fibromyalgia syndrome. This article presents three clinical cases that illustrated this hypothesis.

Source: Gavrilova N, Soprun L, Lukashenko M, Ryabkova V, Fedotkina TV, Churilov LP, Shoenfeld Y. New Clinical Phenotype of the Post-Covid Syndrome: Fibromyalgia and Joint Hypermobility Condition. Pathophysiology. 2022 Jan 19;29(1):24-29. doi: 10.3390/pathophysiology29010003. PMID: 35366287. https://www.mdpi.com/1873-149X/29/1/3/htm (Full text)

A distinctive profile of family genetic risk scores in a Swedish national sample of cases of fibromyalgia, irritable bowel syndrome, and chronic fatigue syndrome compared to rheumatoid arthritis and major depression

Abstract:

Background: Functional somatic disorders (FSD) feature medical symptoms of unclear etiology. Attempts to clarify their origin have been hampered by a lack of rigorous research designs. We sought to clarify the etiology of the FSD by examining the genetic risk patterns for FSD and other related disorders.

Methods: This study was performed in 5 829 186 individuals from Swedish national registers. We quantified familial genetic risk for FSD, internalizing disorders, and somatic disorders in cases of chronic fatigue syndrome (CFS), fibromyalgia (FM), and irritable bowel syndrome (IBS), using a novel method based on aggregate risk in first to fifth degree relatives, adjusting for cohabitation. We compared these profiles with those of a prototypic internalizing psychiatric – major depression (MD) – and a somatic/autoimmune disorder: rheumatoid arthritis (RA).

Results: Patients with FM carry substantial genetic risks not only for FM, but also for pain syndromes and internalizing, autoimmune and sleep disorders. The genetic risk profiles for IBS and CFS are also widely distributed although with lower average risks. By contrast, genetic risk profiles of MD and RA are much more restricted to related conditions.

Conclusion: Patients with FM have a relatively unique family genetic risk score profile with elevated genetic risk across a range of disorders that differs markedly from the profiles of a classic autoimmune disorder (RA) and internalizing disorder (MD). A similar less marked pattern of genetic risks was seen for IBS and CFS. FSD arise from a distinctive pattern of genetic liability for a diversity of psychiatric, autoimmune, pain, sleep, and functional somatic disorders.

Source: Kendler KS, Rosmalen JGM, Ohlsson H, Sundquist J, Sundquist K. A distinctive profile of family genetic risk scores in a Swedish national sample of cases of fibromyalgia, irritable bowel syndrome, and chronic fatigue syndrome compared to rheumatoid arthritis and major depression. Psychol Med. 2022 Mar 31:1-8. doi: 10.1017/S0033291722000526. Epub ahead of print. PMID: 35354508.

Pain Burden in Post-COVID-19 Syndrome following Mild COVID-19 Infection

Abstract:

The global pandemic of SARS-CoV-2 has affected several hundred million people, and many infected people have suffered from a milder initial infection but have never fully recovered. This observational study investigates the pain burden in sufferers of post-COVID-19 syndrome after a milder initial infection.

One hundred post-COVID-19 patients filled out questionnaires regarding sociodemographic data, previous comorbidities, present pharmacological treatment, pain intensity and pain localisation. Health-related quality of life, fatigue, emotional status, and insomnia were measured by validated questionnaires. Multiple post-COVID-19 symptoms, including post-exertional malaise, were evaluated by a symptom questionnaire. Among the 100 participants (mean age 44.5 years), 82% were women, 61% had higher education, and 56% were working full or part time. Nine participants reported previous pain or inflammatory conditions. Among the most painful sites were the head/face, chest, lower extremities, and migrating sites. Generalised pain was self-reported by 75 participants and was estimated in 50 participants. Diagnosis of fibromyalgia according to the 2016 criteria was suspected in 40 participants. Subgroup analyses indicated that comorbidities might play a role in the development of pain.

In conclusion, a major part of sufferers from post-COVID-19 syndrome develop pain, and in addition to its many disabling symptoms, there is an urgent need for pain management in post-COVID-19 syndrome.

Source: Bileviciute-Ljungar I, Norrefalk JR, Borg K. Pain Burden in Post-COVID-19 Syndrome following Mild COVID-19 Infection. J Clin Med. 2022 Jan 31;11(3):771. doi: 10.3390/jcm11030771. PMID: 35160223; PMCID: PMC8836662. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836662/ (Full text)

Stigma perceived by patients with functional somatic syndromes and its effect on health outcomes – A systematic review

Abstract:

Background: Patients with functional somatic syndromes (FSS) experience stigma which arguably affects their health.

Aim: To determine the presence of perceived stigma and its effects on physical and mental health in patients with FSS compared to patients with comparable explained conditions.

Methods: A comprehensive search of PubMed, Embase, PsycINFO, CINAHL and Cochrane Library was performed to select studies focusing on stigma perceived by patients with irritable bowel syndrome (IBS), fibromyalgia (FM) or chronic fatigue syndrome (CFS), comparing these patients to patients with comparable but explained conditions.

Results: We identified 1931 studies after duplicate removal. After screening we included eight studies: one study about all three FSS, one about IBS, five about FM and one about CFS. We found that patients with IBS did not consistently experience higher levels of stigma than those with a comparable explained condition. Patients with CFS and FM experienced higher levels of stigma compared to patients with comparable explained conditions. All studies showed a correlation between stigma and negative health outcomes.

Discussion: Patients with FSS experience stigma and negative health outcomes. However, experiencing stigma is not restricted to patients with FSS, as many patients with explained health conditions also experience stigma. Whether stigma has more negative health consequences in patients with FSS compared to patients with explained health conditions remains unclear and should be assessed in future research.

Source: Ko C, Lucassen P, van der Linden B, Ballering A, Olde Hartman T. Stigma perceived by patients with functional somatic syndromes and its effect on health outcomes – A systematic review. J Psychosom Res. 2022 Jan 6;154:110715. doi: 10.1016/j.jpsychores.2021.110715. Epub ahead of print. PMID: 35016138. https://pubmed.ncbi.nlm.nih.gov/35016138/

 

Pain-related post-exertional malaise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Fibromyalgia: A systematic review and three-level meta-analysis

Abstract:

Objective: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Fibromyalgia (FM) are two debilitating, moderately comorbid illnesses in which chronic musculoskeletal pain symptoms are prevalent. These individuals can experience post-exertional malaise (PEM), a phenomenon where symptom severity is worsened 24hr or longer following physical stress, but the pain-related component of PEM is not well characterized.

Design: Systematic review and meta-analysis.

Methods: Case-control studies involving adults with ME/CFS or FM and measuring pain symptoms before and after exposure to a standardized aerobic exercise test were included. Hedges’ d effect sizes were aggregated using random effects models and potential moderators were explored with meta-regression analysis. Results were adjusted for nesting effects using three-level modeling.

Results: Forty-five effects were extracted from 15 studies involving 306 patients and 292 healthy controls. After adjusting for nesting effects, we observed a small-to-moderate effect indicating higher post-exercise pain in patients than controls (Hedges’ d=0.42; 95% CI: 0.16, 0.67). The mean effect was significantly moderated by pain measurement timepoint (b = -0.19, z = -2.57, P = 0.01) such that studies measuring pain 8-72hr post-exercise showed larger effects (d = 0.71, 95% CI = 0.28-1.14) than those measuring pain 0-2hr post-exercise (d = 0.32, 95% CI = 0.10-0.53).

Conclusions: People with ME/CFS and FM experience small-to-moderate increases in pain severity following exercise which confirms pain as a component of PEM and emphasizes its debilitating impact in ME/CFS and FM. Future directions include determining mechanisms of pain-related PEM and developing exercise prescriptions that minimize symptom exacerbation in these illnesses.

Source: Barhorst EE, Boruch AE, Cook DB, Lindheimer JB. Pain-related post-exertional malaise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Fibromyalgia: A systematic review and three-level meta-analysis. Pain Med. 2021 Oct 20:pnab308. doi: 10.1093/pm/pnab308. Epub ahead of print. PMID: 34668532. https://pubmed.ncbi.nlm.nih.gov/34668532/

Induced pluripotent stem cells as suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Background: Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are devastating metabolic neuroimmune diseases that are difficult to diagnose because of the presence of numerous symptoms and a lack of specific biomarkers. Despite patient heterogeneity linked to patient subgroups and variation in disease severity, anomalies are found in the blood and plasma of these patients when compared with healthy control groups. The seeming specificity of these “plasma factors”, as recently reported by Ron Davis and his group at Stanford University, CA, United States, and observations by our group, have led to the proposal that induced pluripotent stem cells (iPSCs) may be used as metabolic sensors for FM and ME/CFS, a hypothesis that is the basis for this in-depth review.

Aim: To identify metabolic signatures in FM and/or ME/CFS supporting the existence of disease-associated plasma factors to be sensed by iPSCs.

Methods: A PRISMA (Preferred Reported Items for Systematic Reviews and Meta-analysis)-based systematic review of the literature was used to select original studies evaluating the metabolite profiles of FM and ME/CFS body fluids. The MeSH terms “metabolomic” or “metabolites” in combination with FM and ME/CFS disease terms were screened against the PubMed database. Only original studies applying omics technologies, published in English, were included. The data obtained were tabulated according to the disease and type of body fluid analyzed. Coincidences across studies were searched and P-values reported by the original studies were gathered to document significant differences found in the disease groups.

Results: Eighteen previous studies show that some metabolites are commonly altered in ME/CFS and FM body fluids. In vitro cell-based assays have the potential to be developed as screening platforms, providing evidence for the existence of factors in patient body fluids capable of altering morphology, differentiation state and/or growth patterns. Moreover, they can be further developed using approaches aimed at blocking or reversing the effects of specific plasma/serum factors seen in patients. The documented high sensitivity and effective responses of iPSCs to environmental cues suggests that these pluripotent cells could form robust, reproducible reporter systems of metabolic diseases, including ME/CFS and FM. Furthermore, culturing iPSCs, or their mesenchymal stem cell counterparts, in patient-conditioned medium may provide valuable information to predict individual outcomes to stem-cell therapy in the context of precision medicine studies.

Conclusion: This opinion review explains our hypothesis that iPSCs could be developed as a screening platform to provide evidence of a metabolic imbalance in FM and ME/CFS.

Source: Monzón-Nomdedeu MB, Morten KJ, Oltra E. Induced pluripotent stem cells as suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome. World J Stem Cells. 2021 Aug 26;13(8):1134-1150. doi: 10.4252/wjsc.v13.i8.1134. PMID: 34567431; PMCID: PMC8422931. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8422931/ (Full article)

Induced pluripotent stem cells as suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome Monzón-Nomdedeu MB, Morten KJ, Oltra E. Induced pluripotent stem cells as suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

BACKGROUND: Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are devastating metabolic neuroimmune diseases that are difficult to diagnose because of the presence of numerous symptoms and a lack of specific biomarkers. Despite patient heterogeneity linked to patient subgroups and variation in disease severity, anomalies are found in the blood and plasma of these patients when compared with healthy control groups. The seeming specificity of these “plasma factors”, as recently reported by Ron Davis and his group at Stanford University, CA, United States, and observations by our group, have led to the proposal that induced pluripotent stem cells (iPSCs) may be used as metabolic sensors for FM and ME/CFS, a hypothesis that is the basis for this in-depth review.

AIM: To identify metabolic signatures in FM and/or ME/CFS supporting the existence of disease-associated plasma factors to be sensed by iPSCs.

METHODS: A PRISMA (Preferred Reported Items for Systematic Reviews and Meta-analysis)-based systematic review of the literature was used to select original studies evaluating the metabolite profiles of FM and ME/CFS body fluids. The MeSH terms “metabolomic” or “metabolites” in combination with FM and ME/CFS disease terms were screened against the PubMed database. Only original studies applying omics technologies, published in English, were included. The data obtained were tabulated according to the disease and type of body fluid analyzed. Coincidences across studies were searched and P-values reported by the original studies were gathered to document significant differences found in the disease groups.

RESULTS: Eighteen previous studies show that some metabolites are commonly altered in ME/CFS and FM body fluids. In vitro cell-based assays have the potential to be developed as screening platforms, providing evidence for the existence of factors in patient body fluids capable of altering morphology, differentiation state and/or growth patterns. Moreover, they can be further developed using approaches aimed at blocking or reversing the effects of specific plasma/serum factors seen in patients. The documented high sensitivity and effective responses of iPSCs to environmental cues suggests that these pluripotent cells could form robust, reproducible reporter systems of metabolic diseases, including ME/CFS and FM. Furthermore, culturing iPSCs, or their mesenchymal stem cell counterparts, in patient-conditioned medium may provide valuable information to predict individual outcomes to stem-cell therapy in the context of precision medicine studies.

CONCLUSION: This opinion review explains our hypothesis that iPSCs could be developed as a screening platform to provide evidence of a metabolic imbalance in FM and ME/CFS.

Source: Monzón-Nomdedeu MB, Morten KJ, Oltra E. Induced pluripotent stem cells as suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome. World J Stem Cells 2021; 13(8): 1134-1150 [DOI: 10.4252/wjsc.v13.i8.1134https://www.wjgnet.com/1948-0210/full/v13/i8/1134.htm (Full study)

Passive transfer of fibromyalgia symptoms from patients to mice

Abstract:

Fibromyalgia syndrome (FMS) is characterized by widespread pain and tenderness, and patients typically experience fatigue and emotional distress. The etiology and pathophysiology of fibromyalgia are not fully explained and there are no effective drug treatments. Here we show that IgG from FMS patients produced sensory hypersensitivity by sensitizing nociceptive neurons. Mice treated with IgG from FMS patients displayed increased sensitivity to noxious mechanical and cold stimulation, and nociceptive fibers in skin-nerve preparations from mice treated with FMS IgG displayed an increased responsiveness to cold and mechanical stimulation.

These mice also displayed reduced locomotor activity, reduced paw grip strength, and a loss of intraepidermal innervation. In contrast, transfer of IgG-depleted serum from FMS patients or IgG from healthy control subjects had no effect. Patient IgG did not activate naive sensory neurons directly. IgG from FMS patients labeled satellite glial cells and neurons in vivo and in vitro, as well as myelinated fiber tracts and a small number of macrophages and endothelial cells in mouse dorsal root ganglia (DRG), but no cells in the spinal cord. Furthermore, FMS IgG bound to human DRG. Our results demonstrate that IgG from FMS patients produces painful sensory hypersensitivities by sensitizing peripheral nociceptive afferents and suggest that therapies reducing patient IgG titers may be effective for fibromyalgia.

Source: Andreas Goebel, … , Camilla I. Svensson, David A. Andersson. Passive transfer of fibromyalgia symptoms from patients to mice. J Clin Invest. 2021;131(13):e144201. https://doi.org/10.1172/JCI144201. Published July 1, 2021 https://www.jci.org/articles/view/144201?key=51bf6d85e305f6b62f87 (Full text)