Mechanisms underlying exercise intolerance in long COVID: An accumulation of multisystem dysfunction

Abstract:

The pathogenesis of exercise intolerance and persistent fatigue which can follow an infection with the SARS-CoV-2 virus (“long COVID”) is not fully understood. Cases were recruited from a long COVID clinic (N = 32; 44 ± 12 years; 10 (31%) men), and age-/sex-matched healthy controls (HC) (N = 19; 40 ± 13 years; 6 (32%) men) from University College London staff and students.

We assessed exercise performance, lung and cardiac function, vascular health, skeletal muscle oxidative capacity, and autonomic nervous system (ANS) function. Key outcome measures for each physiological system were compared between groups using potential outcome means (95% confidence intervals) adjusted for potential confounders. Long COVID participant outcomes were compared to normative values.

When compared to HC, cases exhibited reduced oxygen uptake efficiency slope (1847 (1679, 2016) vs. 2176 (1978, 2373) mL/min, p = 0.002) and anaerobic threshold (13.2 (12.2, 14.3) vs. 15.6 (14.4, 17.2) mL/kg/min, p < 0.001), and lower oxidative capacity, measured using near infrared spectroscopy (τ: 38.7 (31.9, 45.6) vs. 24.6 (19.1, 30.1) s, p = 0.001). In cases, ANS measures fell below normal limits in 39%.

Long COVID is associated with reduced measures of exercise performance and skeletal muscle oxidative capacity in the absence of evidence of microvascular dysfunction, suggesting mitochondrial pathology. There was evidence of attendant ANS dysregulation in a significant proportion. These multisystem factors might contribute to impaired exercise tolerance in long COVID sufferers.

Source: Jamieson A, Al Saikhan L, Alghamdi L, Hamill Howes L, Purcell H, Hillman T, Heightman M, Treibel T, Orini M, Bell R, Scully M, Hamer M, Chaturvedi N, Montgomery H, Hughes AD, Astin R, Jones S. Mechanisms underlying exercise intolerance in long COVID: An accumulation of multisystem dysfunction. Physiol Rep. 2024 Feb;12(3):e15940. doi: 10.14814/phy2.15940. PMID: 38346773; PMCID: PMC10861355. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861355/ (Full text)

Cardiorespiratory abnormalities in ICU survivors of COVID-19 with Post-acute Sequelae of SARS-CoV-2 infection are unrelated to invasive mechanical ventilation

Abstract:

Post-acute Sequelae of SARS-CoV-2 infection (PASC) often leads to exertional intolerance and reduced exercise capacity, particularly in individuals previously admitted to an intensive care unit (ICU). However, the impact of invasive mechanical ventilation (IMV) on PASC-associated cardiorespiratory abnormalities during exercise remains poorly understood.

This single-center, cross-sectional study aimed to gather knowledge on this topic. Fifty-two patients with PASC recruited ~6 months after ICU discharge were clustered based on their need for IMV (PASC+IMV, n=27) or non-invasive support therapy (PASC+NIS, n=25). Patients underwent pulmonary function and cardiopulmonary exercise testing (CPX), and were compared to a reference group (CONTROL, n=19) comprising individuals of both sexes with similar age, comorbidities, and physical activity levels, but without a history of COVID-19 illness.

Individuals with PASC, irrespective of support therapy, presented with higher rates of cardiorespiratory abnormalities than CONTROL, especially dysfunctional breathing patterns, dynamic hyperinflation, reduced oxygen uptake and oxygen pulse, and blunted heart rate recovery (all P<0.05). Only the rate of abnormal oxygen pulse was greater among PASC+IMV than PASC+NIS (P=0.05). Mean estimates for all CPX variables were comparable between PASC-IMV and PASC-NIS (all P>0.05).

These findings indicate significant involvement of both central and peripheral factors, leading to exertional intolerance in individuals with PASC previously admitted to the ICU, regardless of their need for IMV.

Source: Longobardi I, Prado DMLD, de Andrade DCO, Goessler KF, de Oliveira Júnior GN, Azevedo RA, Leitão AE, Santos JVP, de Sá Pinto AL, Gualano B, Roschel H. Cardiorespiratory abnormalities in ICU survivors of COVID-19 with Post-acute Sequelae of SARS-CoV-2 infection are unrelated to invasive mechanical ventilation. Am J Physiol Heart Circ Physiol. 2024 Feb 9. doi: 10.1152/ajpheart.00073.2024. Epub ahead of print. PMID: 38334972. https://pubmed.ncbi.nlm.nih.gov/38334972/ (Full study available as PDF file)

Differential Cardiopulmonary Hemodynamic Phenotypes in PASC Related Exercise Intolerance

Abstract:

Background Post-acute sequelae of COVID-19 (PASC) affects a significant portion of patients who have previously contracted SARS-CoV-2, with exertional intolerance being a prominent symptom.

Study Objective This study aimed to characterize the invasive hemodynamic abnormalities of PASC-related exertional intolerance using a larger data set from invasive cardiopulmonary exercise testing (iCPET).

Study Design & Intervention Fifty-five patients were recruited from the Yale Post-COVID-19-Recovery-Program, with most experiencing mild acute illness. Supine right heart catheterization (RHC) and iCPET were performed on all participants.

Main results The majority (75%) of PASC patients exhibited impaired peak systemic oxygen extraction (pEO2) during iCPET in conjunction with supranormal cardiac output (CO) (i.e., PASC alone group), On average, the PASC alone group exhibited a “normal” peak exercise capacity, VO2 (89±18% predicted). Approximately 25% of patients had evidence of central cardiopulmonary pathology (i.e., 12 with resting and exercise HFpEF and 2 with exercise PH). PASC patient with HFpEF (i.e., PASC HFpEF group) exhibited similarly impaired pEO2 with well compensated PH (i.e., peak VO2 and cardiac output >80% respectively) despite aberrant central cardiopulmonary exercise hemodynamics. PASC patients with HFpEF also exhibited increased body mass index of 39±7 kg·m−2. To examine the relative contribution of obesity to exertional impairment in PASC HFpEF, a control group compromising of obese non-PASC group (n=61) derived from historical iCPET cohort was used. The non-PASC obese patients with preserved peak VO2 (>80% predicted) exhibited a normal peak pulmonary artery wedge pressure (17±14 versus 25±6 mmHg; p=0.03) with similar maximal voluntary ventilation (90±12 versus 86±10%predicted; p=0.53) compared to PASC HFpEF patients. Impaired pEO2 was not significantly different between PASC patients who underwent supervised rehabilitation and those who did not (p=0.19).

Conclusions This study highlights the importance of considering impaired pEO2 in PASC patients with persistent exertional intolerance unexplained by conventional investigative testing. Results of current study also highlights the prevalence of a distinct high output failure HFpEF phenotype in PASC with a primary peripheral limitation to exercise.

Source: Peter A. Kahn, Phillip Joseph, Paul M. Heerdt, Inderjit Singh. Differential Cardiopulmonary Hemodynamic Phenotypes in PASC Related Exercise Intolerance. ERJ Open Research Jan 2023, 00714-2023; DOI: 10.1183/23120541.00714-2023 https://openres.ersjournals.com/content/early/2023/12/07/23120541.00714-2023 (Full text available as PDF file)

Post-COVID exercise intolerance is associated with capillary alterations and immune dysregulations in skeletal muscles

Abstract:

The SARS-CoV-2 pandemic not only resulted in millions of acute infections worldwide, but also in many cases of post-infectious syndromes, colloquially referred to as “long COVID”. Due to the heterogeneous nature of symptoms and scarcity of available tissue samples, little is known about the underlying mechanisms.

We present an in-depth analysis of skeletal muscle biopsies obtained from eleven patients suffering from enduring fatigue and post-exertional malaise after an infection with SARS-CoV-2. Compared to two independent historical control cohorts, patients with post-COVID exertion intolerance had fewer capillaries, thicker capillary basement membranes and increased numbers of CD169+ macrophages. SARS-CoV-2 RNA could not be detected in the muscle tissues.

In addition, complement system related proteins were more abundant in the serum of patients with PCS, matching observations on the transcriptomic level in the muscle tissue. We hypothesize that the initial viral infection may have caused immune-mediated structural changes of the microvasculature, potentially explaining the exercise-dependent fatigue and muscle pain.

Source: Aschman, T., Wyler, E., Baum, O. et al. Post-COVID exercise intolerance is associated with capillary alterations and immune dysregulations in skeletal muscles. acta neuropathol commun 11, 193 (2023). https://doi.org/10.1186/s40478-023-01662-2 https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-023-01662-2 (Full text)

Exercise capacity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) treated with long-term pyridostigmine

Abstract:

Background: The pathophysiology underlying exertional intolerance in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) remains poorly understood. Previously, a single-dose of 60 mg pyridostigmine, a reversible acetylcholinesterase inhibitor, was found to acutely improve aerobic capacity (Joseph, P. et al. Chest 2022; 162:1116–26).

Aims: To build upon these prior findings, this study aimed to evaluate the long-term effect (>1 month) of pyridostigmine treatment on exercise intolerance in ME/CFS.

Methods: Between 2017-2022, patients who met the National Academy of Medicine criteria for ME/CFS, and had a minimum of two clinical, constant load, submaximal exercise tests (Shape Medical System, MN) were evaluated. Patients who began pyridostigmine after their baseline test were considered the treatment group. Measurements were taken at baseline (T0) and most recent follow-up (T1).

Results: At the follow-up evaluation (690 ± 547 days), the treatment group (n=37, dose range: 24-360mg/d) demonstrated a significant increase in oxygen uptake efficiency slope (OUES) (T0: 1.82 ± 0.56, T1: 1.98 ± 0.53; p=0.044) and pulmonary vascular capacitance (PVCAP) (T0: 486.19 ± 169.89 ml*mmHg, T1: 540.03 ± 170.59 ml*mmHg; p=0.040). These differences were not observed in the control group (n=16) OUES (T0: 1.62 ± 0.40, T1: 1.77 ± 0.47; p=0.268) and PVCAP (T0: 446.94 ± 144.80 ml*mmHg, T1: 465.81 ± 124.34 ml*mmHg; p=0.590).

Conclusion: Long-term treatment with pyridostigmine improved aerobic capacity in ME/CFS as demonstrated by an increase in OUES, mediated by improvements in central hemodynamics (PVCAP).

Source: Johanna SquiresSarra Al-ZayerDavid Systrom. Exercise capacity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) treated with long-term pyridostigmine.

Structural and functional impairments of skeletal muscle in patients with post-acute sequelae of SARS-CoV-2 infection

Abstract:

Background: Following acute COVID-19, a substantial proportion of patients showed symptoms and sequelae for several months, namely the post-acute sequelae of COVID-19 (PASC) syndrome. Major phenomena are exercise intolerance, muscle weakness and fatigue. We aimed to investigate the physiopathology of exercise intolerance in patients with PASC syndrome by structural and functional analyses of skeletal muscle.

Methods: At least 3 months after infection, non-hospitalized patients with PASC (n=11,ys:54±11; PASC) and patients without long-term symptoms (n=12,ys:49±9; CTRL) visited the laboratory on four non-consecutive days. Spirometry, lung diffusion capacity and quality of life were assessed at rest. Cardiopulmonary incremental exercise test was performed. Oxygen consumption (VO2) kinetics were determined by moderate-intensity exercises. Muscle oxidative capacity (k) was assessed by near-infrared spectroscopy. Histochemical analysis, O2 flux (JO2) by high-resolution respirometry, and quantification of key molecular markers of mitochondrial biogenesis and dynamics were performed in vastus lateralis biopsies.

Results: Pulmonary and cardiac functions were within normal range in all patients. VO2peak was lower in PASC than CTRL (24.7±5.0vs32.9±7.4mL*min-1*kg-1, respectively, P<.05). VO2 kinetics was slower in PASC than CTRL (41±12vs30±9s-1, P<.05). k was lower in PASC than CTRL (1.54±0.49vs2.07±0.51min-1, P<.05). Citrate synthase, PGC1alfa and JO2 for mitochondrial complex II were significantly lower in PASC vs CTRL (all P<.05).

Conclusion: In our cohort of patients with PASC, we showed limited exercise tolerance mainly due to “peripheral” determinants. Substantial reductions were observed for biomarkers of mitochondrial function, content, and biogenesis. PASC syndrome appears to negatively impact skeletal muscle function, although the disease is an heterogenous condition.

Source: Colosio M, Brocca L, Gatti M, Neri M, Crea E, Cadile F, Canepari M, Pellegrino MA, Polla B, Porcelli S, Bottinelli R. Structural and functional impairments of skeletal muscle in patients with post-acute sequelae of SARS-CoV-2 infection. J Appl Physiol (1985). 2023 Sep 7. doi: 10.1152/japplphysiol.00158.2023. Epub ahead of print. PMID: 37675472. https://journals.physiology.org/doi/abs/10.1152/japplphysiol.00158.2023 (Full text available as PDF file)

WASF3 disrupts mitochondrial respiration and may mediate exercise intolerance in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by various disabling symptoms including exercise intolerance and is diagnosed in the absence of a specific cause, making its clinical management challenging. A better understanding of the molecular mechanism underlying this apparent bioenergetic deficiency state may reveal insights for developing targeted treatment strategies.

We report that overexpression of Wiskott-Aldrich Syndrome Protein Family Member 3 (WASF3), here identified in a 38-y-old woman suffering from long-standing fatigue and exercise intolerance, can disrupt mitochondrial respiratory supercomplex formation and is associated with endoplasmic reticulum (ER) stress.

Increased expression of WASF3 in transgenic mice markedly decreased their treadmill running capacity with concomitantly impaired respiratory supercomplex assembly and reduced complex IV levels in skeletal muscle mitochondria. WASF3 induction by ER stress using endotoxin, well known to be associated with fatigue in humans, also decreased skeletal muscle complex IV levels in mice, while decreasing WASF3 levels by pharmacologic inhibition of ER stress improved mitochondrial function in the cells of the patient with chronic fatigue.

Expanding on our findings, skeletal muscle biopsy samples obtained from a cohort of patients with ME/CFS showed increased WASF3 protein levels and aberrant ER stress activation. In addition to revealing a potential mechanism for the bioenergetic deficiency in ME/CFS, our study may also provide insights into other disorders associated with fatigue such as rheumatic diseases and long COVID.

Source: Wang PY, Ma J, Kim YC, Son AY, Syed AM, Liu C, Mori MP, Huffstutler RD, Stolinski JL, Talagala SL, Kang JG, Walitt BT, Nath A, Hwang PM. WASF3 disrupts mitochondrial respiration and may mediate exercise intolerance in myalgic encephalomyelitis/chronic fatigue syndrome. Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2302738120. doi: 10.1073/pnas.2302738120. Epub 2023 Aug 14. PMID: 37579159. https://pubmed.ncbi.nlm.nih.gov/37579159/

Exercise Capacity and Vascular Function in Long-COVID Sufferers

Abstract:

Background: Exercise intolerance is a prominent aetiology of long-COVID syndrome, yet the mechanisms causing the debilitation remain unknown. Vascular dysfunction is thought to play a role, hence we sought to determine if there is a relationship between exercise capacity and vascular function in COVID survivors.

Methods: Forty-two COVID-19 survivors; 33 self-identified long-COVID sufferers and 9 recovered controls (40.7±11.8 vs 40.2±14.5 years, both 67% female) underwent extensive phenotyping >3 months post-infection. Blood pressure (BP) and heart rate were measured (automated BP device), before carotid, femoral, and radial tonometry (carotid–femoral pulse wave velocity; [cPWV], augmentation index; [AIx]) were performed to assess vascular stiffness. Endothelium-dependent and independent dilatation were assessed via brachial artery flow-mediated dilation ([FMD]; Doppler-ultrasound) in response to reactive hyperaemia and glyceryl trinitrate respectively. Cardiopulmonary exercise testing determined peak oxygen uptake (VO2).

Results: Long-COVID sufferers had reduced VO2 peak compared to controls (26.5±7.0 vs 32.8±11.3 ml/min/kg, p= 0.045). Haemodynamic and vascular function were similar between groups, though there was a medium effect size (ES) for between group differences in cPWV (6.6±1.2 vs 6.1±0.9 m/sec, p=0.20; ES 0.44) and AIx (14±15% vs 4±16%, p=0.11; ES 0.67). VO2 peak was inversely correlated with AIx (r = -0.60, p<0.001) and cPWV (r = -0.55, p<0.001). There was no significant association between endothelial function and exercise capacity parameters.

Conclusions: Lower VO2peak measures in long-COVID participants were strongly associated with increased AIx and cPWV. These findings indicate the need for further longitudinal investigations to determine if these manifestations persist and impact long-term cardiovascular health.

Source: I.Wallace, E. Howden, D. Green, G. Sesa-Ashton. Exercise Capacity and Vascular Function in Long-COVID Sufferers. Heart, Lung and Circulation. ABSTRACT| VOLUME 32, SUPPLEMENT 3, S114-S115, JULY 2023. https://www.heartlungcirc.org/article/S1443-9506(23)04000-3/fulltext 

Carotid body dysregulation contributes to the enigma of long COVID

Abstract:

The symptoms of long COVID, which include fatigue, breathlessness, dysregulated breathing, and exercise intolerance, have unknown mechanisms. These symptoms are also observed in heart failure and are partially driven by increased sensitivity of the carotid chemoreflex. As the carotid body has an abundance of ACE2 (the cell entry mechanism for SARS-CoV-2), we investigated whether carotid chemoreflex sensitivity was elevated in participants with long COVID. During cardiopulmonary exercise testing, the VE/VCO2 slope (a measure of breathing efficiency) was higher in the long COVID group than in the controls, indicating excessive hyperventilation.

The hypoxic ventilatory response, which measures carotid chemoreflex sensitivity, was increased in long COVID participants and correlated with the VE/VCO2 slope, suggesting that excessive hyperventilation may be related to carotid body hypersensitivity. Therefore, the carotid chemoreflex is sensitized in long COVID and may explain dysregulated breathing and exercise intolerance in these participants. Tempering carotid body excitability may be a viable treatment option for long COVID patients.

Source: Ahmed El-MedanyZoe H AdamsHazel C BlytheKatrina A HopeAdrian H KendrickAna Paula Abdala SheikhJulian FR PatonAngus K NightingaleEmma C Hart. Carotid body dysregulation contributes to the enigma of long COVID. https://www.medrxiv.org/content/10.1101/2023.05.25.23290513v1.full-text (Full text)

Physiological underpinnings of long COVID: what have we learned?

In a review, Batta et al 2 , addressed the cardiovascular symptoms in COVID-19 patients with a focus on vascular dysfunction, arrhythmias, myocardial ischemia, and discussed the most updated recommendations for the treatment of COVID-19. We previously reported the presence of almost all the receptors of SARS-CoV-2 on cardiomyocytes which makes the heart a favorable target for this virus 3 . Batta et al 2 indicated that the vascular endothelial dysfunction is involved in the pathogenesis of SARS-CoV-2 and hence the activation of pro-inflammatory cytokines leading to increased vascular permeability and thrombosis in many organs.

Tachycardia was the most common cardiac presentation associated with SARS-CoV-2 infection, along with arrhythmias and conduction blocks, myocardial ischemia and injury, and hypertension. Interestingly, the authors reported that the elevated ACE-2 expression on endothelial cells of COVID -19 patients’ lungs indicates an elevated pro-hypertensive angiotensin II level leading to vasoconstriction and aldosterone-driven hypervolemia. Thus, the use of renin-angiotensin-aldosterone inhibitors in hypertension treatment of patients infected with SARS-CoV-2 was cautioned to avoid exacerbated cardiovascular clinical outcome.

An article from Gonzalez-Gonzalez et al. 4 reviewed the application of Virchow’s Triad in detail for the risk of developing stroke and related intravascular thrombotic diseases in the context of COVID-19 infection. The authors discussed each part of Virchow’s triad in detail, such as hypercoagulable state, vascular damage, and intravascular stasis of blood. They looked into literature on the effects of COVID-19 infection for the formation of intravascular and intracardiac clots (leading to stroke), formation of cardiac sequelae and autopsy studies reporting elevated markers in ventricular myocardium. The authors reviewed the risk factor for stroke development, differences between ischemic vs haemorrhagic stroke and frequent complications of COVID-19 patients such as pulmonary embolism. The authors also discussed the current treatment plans and recommended some differential treatment approaches for COVID-19 infection patients concerning known mechanisms of Virchow’s triad. Finally, the authors discussed the outcomes and long-term consequences of COVID-19 infection and the cardiovascular effects of COVID-19 vaccines.

The work from A. Mujalli and co-workers 5 investigated genetic pathways in patients with severe COVID-19 and comorbidities, by means of genome-wide transcriptomic datasets publicly available within the first year of the pandemic. Differential gene expression (DGE), gene ontology (GO), pathway enrichment, functional similarity, phenotypic analysis and drug target identification studies were conducted using a cohort of 120 COVID-19 patients, 281 patients with chronic comorbidities (153 CVD, 64 atherosclerosis, 33 diabetes, and 31 obesity), and 252 patients with different infectious diseases (145 respiratory syncytial virus, 95 influenza, and 12 MERS). In total, 29 genes were identified to contributing to the clinical severity of COVID-19 infection in patients with comorbidities. Remarkably, identified genes were found to be involved in immune cell homeostasis during innate immunity, mostly in monocyte and macrophage function. In addition, results from drug target identification studies show a mismatch between the currently used drugs in COVID-19 therapy and predicted drugs against identified genes.

Furtheremore, in this issue of the Journal, Chan et al 6 examined the association of COVID-19 with heart rate (HR) and blood pressure (BP) variability during exercise in a cohort of 18 patients with prior COVID-19 infection (equally split between symptomatic and asymptomatic), and a cohort of 9 controls who were never infected with COVID-19. Using a rigorous experimental design, the investigators measured HR and BP at regular intervals before, during, and after submaximal exercise, and quantified HR and BP variability on time and frequency domains. Baseline HR and BP were not significantly different between groups (symptomatic vs. asymptomatic vs. controls), nor were they different after completing a bout of submaximal exercise at a comparable workload. However, HR and BP variability was blunted only in individuals with prior symptomatic COVID-19 infection, but not in controls or those with a prior asymptomatic infection, suggesting an underlying degree of autonomic nervous system dysfunction in affected individuals.

The authors are to be lauded for their elegant and clinically relevant work, despite the obvious limitation of small sample size, since it provides much needed insight into COVID-19-induced abnormalities in cardiac physiology. The current findings provide a potential explanation for exercise intolerance, a frequently reported long-term symptom among survivors of COVID-19, since blunting of HR and BP variability are markers of impaired parasympathetic nervous system and poor cardiovascular health.In conclusion, the COVID-19 pandemic affected millions around the globe before it started abating with the advent of the emergent vaccines that were approved for use on emergency basis.

The WHO declared the end of the pandemic after three years of its surge. While millions succumbed to this deadly respiratory infection, survivors from this illness, particularity those who were severely sick, are reporting cardiac and nervous abnormalities. We hope that this series provides a new perspectives on the manifestations of COVID-19 in the heart, the brain, and the vasculature with the hope to guide therapeutic interventions for patients suffering from long term sequelae of SARS-CoV-2 infection.

Source: Moni Nader1, Georges E. Haddad, Jacobo Elies, Sriharsha Kantamneni and Firas Albadarin. Physiological underpinnings of long COVID: what have we learned? Front. Physiol. Sec. Clinical and Translational Physiology. Volume 14 – 2023 | doi: 10.3389/fphys.2023.122455 https://www.frontiersin.org/articles/10.3389/fphys.2023.1224550/full (Full text)