Dynamic Epigenetic Changes during a Relapse and Recovery Cycle in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disease with variable severity throughout the ongoing illness. Patients experience relapses where symptoms increase in severity, leaving them with a marked reduction in quality of life. Previous work has investigated molecular differences between ME/CFS patients and healthy controls, but the dynamic changes specific to each individual patient are unknown. Precision medicine can determine how each patient responds individually during variations in their long-term illness. We apply precision medicine here to map genomic changes in two selected ME/CFS patients through a relapse recovery cycle.

Results: DNA was isolated from Peripheral Blood Mononuclear Cells (PBMCs) from two patients and a healthy age/gender matched control in a longitudinal study to capture a patient relapse. Reduced representation DNA methylation sequencing profiles were obtained from each time point spanning the relapse recovery cycle. Both patients throughout the time course showed a significantly larger methylome variability (10-20 fold) compared with the control. During the relapse changes in the methylome profiles of the two patients were detected in regulatory-active regions of the genome that were associated respectively with 157 and 127 downstream genes, indicating disturbed metabolic, immune and inflammatory functions occurring during the relapse.

Conclusions: Severe health relapses in ME/CFS patients result in functionally important changes in their DNA methylomes that, while differing among patients, lead to similar compromised physiology. DNA methylation that is a signature of disease variability in ongoing ME/CFS may have practical applications for strategies to decrease relapse frequency.

Source: Amber Helliwell, Peter Stockwell, Tina Edgar, Aniruddha Chatterjee, warren Perry Tate. Dynamic Epigenetic Changes during a Relapse and Recovery Cycle in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.
medRxiv 2022.02.24.22270912; doi: https://doi.org/10.1101/2022.02.24.22270912 (Full text)

Chronic fatigue syndrome and epigenetics: The case for hyperbaric oxygen therapy in biomarker identification

Abstract:

Chronic fatigue syndrome (CFS) is a poorly-understood respiratory condition that affects millions of individuals. Hyperbaric oxygen therapy (HBOT) is a treatment option being considered to address CFS as it is suggested to combat fatigue and increase oxygenation. HBOT provides two opportunities in advancing research of CFS: it may provide data on symptom amelioration and be utilized in the search for a biomarker. By either identifying biomarkers before using HBOT to compare epigenomes of patients before and after treatment or using HBOT to find epigenetic discrepancies between patients with and without treatment, matching epigenetic regulation with symptom amelioration may significantly advance the understanding of the etiology and treatment mechanism for CFS. EPAS1/HIF-2α is a leading candidate for an epigenetic biomarker as it responds differentially to hypoxic and normoxic conditions, which degrades more slowly in hypoxic conditions. Epigenetic regulation of EPAS1/HIF-2α in such differential conditions may be explored in HBOT experiments. In addition to HBOT as a promising treatment option for CFS symptoms, it may aid the identification of biomarkers in CFS. Further research into both outcomes is strongly encouraged.

Source: Shah RJ. Chronic fatigue syndrome and epigenetics: The case for hyperbaric oxygen therapy in biomarker identification. J Pulmonol Respir Res. 2021; 5: 027-030. DOI: 10.29328/journal.jprr.1001020 https://www.heighpubs.org/jprr/jprr-aid1020.php (Full text)

The Interplay between Oxidative Stress, Exercise, and Pain in Health and Disease: Potential Role of Autonomic Regulation and Epigenetic Mechanisms

Abstract:

Oxidative stress can be induced by various stimuli and altered in certain conditions, including exercise and pain. Although many studies have investigated oxidative stress in relation to either exercise or pain, the literature presents conflicting results. Therefore, this review critically discusses existing literature about this topic, aiming to provide a clear overview of known interactions between oxidative stress, exercise, and pain in healthy people as well as in people with chronic pain, and to highlight possible confounding factors to keep in mind when reflecting on these interactions. In addition, autonomic regulation and epigenetic mechanisms are proposed as potential mechanisms of action underlying the interplay between oxidative stress, exercise, and pain.

This review highlights that the relation between oxidative stress, exercise, and pain is poorly understood and not straightforward, as it is dependent on the characteristics of exercise, but also on which population is investigated. To be able to compare studies on this topic, strict guidelines should be developed to limit the effect of several confounding factors. This way, the true interplay between oxidative stress, exercise, and pain, and the underlying mechanisms of action can be revealed and validated via independent studies.

Source: Hendrix J, Nijs J, Ickmans K, Godderis L, Ghosh M, Polli A. The Interplay between Oxidative Stress, Exercise, and Pain in Health and Disease: Potential Role of Autonomic Regulation and Epigenetic Mechanisms. Antioxidants (Basel). 2020 Nov 23;9(11):1166. doi: 10.3390/antiox9111166. PMID: 33238564; PMCID: PMC7700330. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700330/  (Full text)

Changes in DNA methylation profiles of myalgic encephalomyelitis/chronic fatigue syndrome patients reflect systemic dysfunctions

Abstract:

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a lifelong debilitating disease with a complex pathology not yet clearly defined. Susceptibility to ME/CFS involves genetic predisposition and exposure to environmental factors, suggesting an epigenetic association. Epigenetic studies with other ME/CFS cohorts have used array-based technology to identify differentially methylated individual sites. Changes in RNA quantities and protein abundance have been documented in our previous investigations with the same ME/CFS cohort used for this study.

Results: DNA from a well-characterised New Zealand cohort of 10 ME/CFS patients and 10 age-/sex-matched healthy controls was isolated from peripheral blood mononuclear (PBMC) cells, and used to generate reduced genome-scale DNA methylation maps using reduced representation bisulphite sequencing (RRBS). The sequencing data were analysed utilising the DMAP analysis pipeline to identify differentially methylated fragments, and the MethylKit pipeline was used to quantify methylation differences at individual CpG sites. DMAP identified 76 differentially methylated fragments and Methylkit identified 394 differentially methylated cytosines that included both hyper- and hypo-methylation. Four clusters were identified where differentially methylated DNA fragments overlapped with or were within close proximity to multiple differentially methylated individual cytosines. These clusters identified regulatory regions for 17 protein encoding genes related to metabolic and immune activity. Analysis of differentially methylated gene bodies (exons/introns) identified 122 unique genes. Comparison with other studies on PBMCs from ME/CFS patients and controls with array technology showed 59% of the genes identified in this study were also found in one or more of these studies. Functional pathway enrichment analysis identified 30 associated pathways. These included immune, metabolic and neurological-related functions differentially regulated in ME/CFS patients compared to the matched healthy controls.

Conclusions: Major differences were identified in the DNA methylation patterns of ME/CFS patients that clearly distinguished them from the healthy controls. Over half found in gene bodies with RRBS in this study had been identified in other ME/CFS studies using the same cells but with array technology. Within the enriched functional immune, metabolic and neurological pathways, a number of enriched neurotransmitter and neuropeptide reactome pathways highlighted a disturbed neurological pathophysiology within the patient group.

Source: Helliwell AM, Sweetman EC, Stockwell PA, Edgar CD, Chatterjee A, Tate WP. Changes in DNA methylation profiles of myalgic encephalomyelitis/chronic fatigue syndrome patients reflect systemic dysfunctions. Clin Epigenetics. 2020 Nov 4;12(1):167. doi: 10.1186/s13148-020-00960-z. PMID: 33148325; PMCID: PMC7641803. https://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-020-00960-z  (Full study)

DNA Methylation and BDNF Expression Account for Symptoms and Widespread Hyperalgesia in Patients With Chronic Fatigue Syndrome and Fibromyalgia

Abstract:

Background: Epigenetics of neurotrophic factors holds the potential to unravel the mechanisms underlying the pathophysiology of complex conditions such as chronic fatigue syndrome (CFS). This study explored the role of brain-derived neurotrophic factor (BDNF) genetics, epigenetics, and protein expression in patients with both CFS and comorbid fibromyalgia (CFS/FM).

Methods: A repeated-measures study in 54 participants (28 patients with CFS/FM and 26 matched healthy controls) was conducted. Participants underwent a comprehensive assessment, including questionnaires, sensory testing, and blood withdrawal. BDNF protein level was measured in serum (sBDNF) using ELISA, while polymorphism and DNA methylation were measured in blood, using pyrosequencing technology. To assess temporal stability of the measures, participants underwent the same assessment twice within four days.

Results: Repeated-measures mixed linear models were performed for between-group analysis. sBNDF was higher in patients with CFS/FM (F=15.703; mean difference: 3.31 ng/ml, 95% C.I. 1.65 to 4.96; p=.001), whereas BDNF DNA methylation was lower in Exon IX (F=9.312; mean difference -2.38%, C.I. -3.93 to -0.83; p=.003). BDNF DNA methylation was mediated by the Val66Met (rs6265) polymorphism. Lower methylation in the same region predicted higher sBDNF (F=4.910, t= -2.216, p=.029, 95% C.I. = -.712 to -.039) which in turn predicted participants’ symptoms (F=14.410, t= 3.796, 95% C.I.= 1.79 to 5.71, p=.001) and widespread hyperalgesia (F=4.147, t= 2.036, 95% C.I.= .01 to .08, p=.044).

Discussion: sBDNF is higher in patients with CFS/FM and BDNF methylation in exon IX accounts for regulating protein expression. Altered BDNF might represent a key mechanism explaining CFS/FM pathophysiology.

Source: Polli A, Ghosh M, Bakusic J, et al. DNA methylation and BDNF expression account for symptoms and widespread hyperalgesia in patients with Chronic Fatigue Syndrome and Fibromyalgia [published online ahead of print, 2020 Jun 20]. Arthritis Rheumatol. 2020;10.1002/art.41405. doi:10.1002/art.41405 https://pubmed.ncbi.nlm.nih.gov/32562379/

Assessing diagnostic value of microRNAs from peripheral blood mononuclear cells and extracellular vesicles in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating multisystemic disease of unknown etiology, affecting thousands of individuals worldwide. Its diagnosis still relies on ruling out medical problems leading to unexplained fatigue due to a complete lack of disease-specific biomarkers. Our group and others have explored the potential value of microRNA profiles (miRNomes) as diagnostic tools for this disease. However, heterogeneity of participants, low numbers, the variety of samples assayed, and other pre-analytical variables, have hampered the identification of disease-associated miRNomes.

In this study, our team has evaluated, for the first time, ME/CFS miRNomes in peripheral blood mononuclear cells (PBMCs) and extracellular vesicles (EVs) from severely ill patients recruited at the monographic UK ME biobank to assess, using standard operating procedures (SOPs), blood fractions with optimal diagnostic power for a rapid translation of a miR-based diagnostic method into the clinic.

Our results show that routine creatine kinase (CK) blood values, plasma EVs physical characteristics (including counts, size and zeta-potential), and a limited number of differentially expressed PBMC and EV miRNAs appear significantly associated with severe ME/CFS (p < 0.05). Gene enrichment analysis points to epigenetic and neuroimmune dysregulated pathways, in agreement with previous reports. Population validation by a cost-effective approach limited to these few potentially discriminating variables is granted.

Source: Almenar-Pérez E, Sarría L, Nathanson L, Oltra E. Assessing diagnostic value of microRNAs from peripheral blood mononuclear cells and extracellular vesicles in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Sci Rep. 2020 Feb 7;10(1):2064. doi: 10.1038/s41598-020-58506-5. https://www.nature.com/articles/s41598-020-58506-5 (Full text)

Epigenetic Components of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Uncover Potential Transposable Element Activation

Abstract:

PURPOSE: Studies to determine epigenetic changes associated with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) remain scarce; however, current evidence clearly shows that methylation patterns of genomic DNA and noncoding RNA profiles of immune cells differ between patients and healthy subjects, suggesting an active role of these epigenetic mechanisms in the disease. The present study compares and contrasts the available ME/CFS epigenetic data in an effort to evidence overlapping pathways capable of explaining at least some of the dysfunctional immune parameters linked to this disease.

METHODS: A systematic search of the literature evaluating the ME/CFS epigenome landscape was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. Differential DNA methylation and noncoding RNA differential expression patterns associated with ME/CFS were used to screen for the presence of transposable elements using the Dfam browser, a search program nurtured with the Repbase repetitive sequence database and the RepeatMasker annotation tool.

FINDINGS: Unexpectedly, particular associations of transposable elements and ME/CFS epigenetic hallmarks were uncovered. A model for the disease emerged involving transcriptional induction of endogenous dormant transposons and structured cellular RNA interactions, triggering the activation of the innate immune system without a concomitant active infection.

IMPLICATIONS: Repetitive sequence filters (ie, RepeatMasker) should be avoided when analyzing transcriptomic data to assess the potential participation of repetitive sequences (“junk repetitive DNA”), representing >45% of the human genome, in the onset and evolution of ME/CFS. In addition, transposable element screenings aimed at designing cost-effective, focused empirical assays that can confirm or disprove the suspected involvement of transposon transcriptional activation in this disease, following the pilot strategy presented here, will require databases gathering large ME/CFS epigenetic datasets.

Copyright © 2019. Published by Elsevier Inc.

Source: Almenar-Pérez E, Ovejero T, Sánchez-Fito T, Espejo JA, Nathanson L, Oltra E. Epigenetic Components of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Uncover Potential Transposable Element Activation. Clin Ther. 2019 Mar 22. pii: S0149-2918(19)30072-4. doi: 10.1016/j.clinthera.2019.02.012. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/30910331

Identification of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-associated DNA methylation patterns

Abstract:

BACKGROUND: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex condition involving multiple organ systems and characterized by persistent/relapsing debilitating fatigue, immune dysfunction, neurological problems, and other symptoms not curable for at least 6 months. Disruption of DNA methylation patterns has been tied to various immune and neurological diseases; however, its status in ME/CFS remains uncertain. Our study aimed at identifying changes in the DNA methylation patterns that associate with ME/CFS.

METHODS: We extracted genomic DNA from peripheral blood mononuclear cells from 13 ME/CFS study subjects and 12 healthy controls and measured global DNA methylation by ELISA-like method and site-specific methylation status using Illumina MethylationEPIC microarrays. Pyrosequencing validation included 33 ME/CFS cases and 31 controls from two geographically distant cohorts.

RESULTS: Global DNA methylation levels of ME/CFS cases were similar to those of controls. However, microarray-based approach allowed detection of 17,296 differentially methylated CpG sites in 6,368 genes across regulatory elements and within coding regions of genes. Analysis of DNA methylation in promoter regions revealed 307 differentially methylated promoters. Ingenuity pathway analysis indicated that genes associated with differentially methylated promoters participated in at least 15 different pathways mostly related to cell signaling with a strong immune component.

CONCLUSIONS: This is the first study that has explored genome-wide epigenetic changes associated with ME/CFS using the advanced Illumina MethylationEPIC microarrays covering about 850,000 CpG sites in two geographically distant cohorts of ME/CFS cases and matched controls. Our results are aligned with previous studies that indicate a dysregulation of the immune system in ME/CFS. They also suggest a potential role of epigenetic de-regulation in the pathobiology of ME/CFS. We propose screening of larger cohorts of ME/CFS cases to determine the external validity of these epigenetic changes in order to implement them as possible diagnostic markers in clinical setting.

Source: Trivedi MS, Oltra E, Sarria L, Rose N, Beljanski V, Fletcher MA, Klimas NG, Nathanson L. Identification of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-associated DNA methylation patterns. PLoS One. 2018 Jul 23;13(7):e0201066. doi: 10.1371/journal.pone.0201066. eCollection 2018.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6051500/ (Full study)

Integration of DNA methylation & health scores identifies subtypes in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

AIM: To identify subtypes in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) based on DNA methylation profiles and health scores.

METHODS: DNA methylome profiles in immune cells were integrated with symptomatology from 70 women with ME/CFS using similarity network fusion to identify subtypes.

RESULTS: We discovered four ME/CFS subtypes associated with DNA methylation modifications in 1939 CpG sites, three RAND-36 categories and five DePaul Symptom Questionnaire measures. Methylation patterns of immune response genes and differences in physical functioning and postexertional malaise differentiated the subtypes.

CONCLUSION: ME/CFS subtypes are associated with specific DNA methylation differences and health symptomatology and provide additional evidence of the potential relevance of metabolic and immune differences in ME/CFS with respect to specific symptoms.

Source: de Vega WC, Erdman L, Vernon SD, Goldenberg A, McGowan PO. Integration of DNA methylation & health scores identifies subtypes in myalgic encephalomyelitis/chronic fatigue syndrome. Epigenomics. 2018 Apr 25. doi: 10.2217/epi-2017-0150. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/29692205

Genome-Epigenome Interactions Associated with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is an example of a complex disease of unknown etiology. Multiple studies point to disruptions in immune functioning in ME/CFS patients as well as with specific genetic polymorphisms and alterations of the DNA methylome in lymphocytes. However, the association between DNA methylation and genetic background in relation to the ME/CFS is currently unknown.

In this study we explored this association by characterizing the genomic (~4.3 million SNPs) and epigenomic (~480 thousand CpG loci) variability between populations of ME/CFS patients and healthy controls. We found significant associations of methylation states in T-lymphocytes at several CpG loci and regions with ME/CFS phenotype. These methylation anomalies are in close proximity to genes involved with immune function and cellular metabolism.

Finally, we found significant correlations of genotypes with methylation phenotypes associated with ME/CFS. The findings from this study highlight the role of epigenetic and genetic interactions in complex diseases, and suggest several genetic and epigenetic elements potentially involved in the mechanisms of disease in ME/CFS.

Source: Santiago Herrera, Wilfred C. de Vega, David Ashbrook, Suzanne D. Vernon, Patrick O. McGowan. Genome-Epigenome Interactions Associated with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. bioRxiv preprint first posted online Dec. 22, 2017; doi: http://dx.doi.org/10.1101/237958. (Full article)