Cognitive assessment in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a cognitive substudy of the multi-site clinical assessment of ME/CFS (MCAM)

Abstract:

Introduction: Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) experience cognitive problems with attention, information processing speed, working memory, learning efficiency, and executive function. Commonly, patients report worsening of cognitive symptoms over time after physical and/or cognitive challenges. To determine, monitor, and manage longitudinal decrements in cognitive function after such exposures, it is important to be able to screen for cognitive dysfunction and changes over time in clinic and also remotely at home. The primary objectives of this paper were: (1) to determine whether a brief computerized cognitive screening battery will detect differences in cognitive function between ME/CFS and Healthy Controls (HC), (2) to monitor the impact of a full-day study visit on cognitive function over time, and (3) to evaluate the impact of exercise testing on cognitive dysfunction.

Methods: This cognitive sub-study was conducted between 2013 and 2019 across seven U.S. ME/CFS clinics as part of the Multi-Site Clinical Assessment of ME/CFS (MCAM) study. The analysis included 426 participants (261 ME/CFS and 165 HC), who completed cognitive assessments including a computerized CogState Brief Screening Battery (CBSB) administered across five timepoints (T0-T4) at the start of and following a full day in-clinic visit that included exercise testing for a subset of participants (182 ME/CFS and 160 HC). Exercise testing consisted of ramped cycle ergometry to volitional exhaustion. The primary outcomes are performance accuracy and latency (performance speed) on the computerized CBSB administered online in clinic (T0 and T1) and at home (T2-T4).

Results: No difference was found in performance accuracy between ME/CFS and HCs whereas information processing speed was significantly slower for ME/CFS at most timepoints with Cohen’s d effect sizes ranging from 0.3-0.5 (p < 0.01). The cognitive decline over time on all CBSB tasks was similar for patients with ME/CFS independent of whether exercise testing was included in the clinic visit.

Conclusion: The challenges of a clinic visit (including cognitive testing) can lead to further cognitive deficits. A single short session of intense exercise does not further reduce speed of performance on any CBSB tasks.

Source: Lange G, Lin JS, Chen Y, Fall EA, Peterson DL, Bateman L, Lapp C, Podell RN, Natelson BH, Kogelnik AM, Klimas NG, Unger ER. Cognitive assessment in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a cognitive substudy of the multi-site clinical assessment of ME/CFS (MCAM). Front Neurosci. 2024 Nov 1;18:1460157. doi: 10.3389/fnins.2024.1460157. PMID: 39554847; PMCID: PMC11565701. https://pmc.ncbi.nlm.nih.gov/articles/PMC11565701/ (Full text)

Exploring Cognitive Dysfunction in Long COVID Patients: Eye Movement Abnormalities and Frontal-Subcortical Circuits Implications via Eye-Tracking and Machine Learning

Abstract:

Background: Cognitive dysfunction is regarded as one of the most severe aftereffects following coronavirus disease 2019 (COVID-19). Eye movements, controlled by various brain regions, including the dorsolateral prefrontal cortex and frontal-thalamic circuits, offer a potential metric for evaluating cognitive dysfunction. We aimed to examine the utility of eye movement measurements in identifying cognitive impairments in long COVID patients.

Methods: We recruited 40 long COVID patients experiencing subjective cognitive complaints and 40 healthy controls and used a certified eye-tracking medical device to record saccades and antisaccades. Machine learning was applied to enhance the analysis of eye movement data.

Results: Patients did not differ from the healthy controls regarding age, sex, and years of education. However, the patients’ Montreal Cognitive Assessment total score was significantly lower than healthy controls. Most eye movement parameters were significantly worse in patients: the latencies, gain, and velocity of visually and memory-guided saccades, the number of correct memory saccades, the latencies and duration of reflexive saccades, and the number of errors in the antisaccade test. Machine learning permitted distinguishing between long COVID patients experiencing subjective cognitive complaints and healthy controls.

Conclusion: Our findings suggest impairments in frontal subcortical circuits in long COVID patients experiencing subjective cognitive complaints. Eye-tracking, combined with machine learning, offers a novel, efficient way to assess and monitor long COVID patients’ cognitive dysfunctions, suggesting its utility in clinical settings for early detection and personalized treatment strategies. Further research is needed to determine the long-term implications of these findings and the reversibility of cognitive dysfunctions.

Source: Benito-León J, Lapeña J, García-Vasco L, Cuevas C, Viloria-Porto J, Calvo-Córdoba A, Arrieta-Ortubay E, Ruiz-Ruigómez M, Sánchez-Sánchez C, García-Cena C. Exploring Cognitive Dysfunction in Long COVID Patients: Eye Movement Abnormalities and Frontal-Subcortical Circuits Implications via Eye-Tracking and Machine Learning. Am J Med. 2024 Apr 5:S0002-9343(24)00217-1. doi: 10.1016/j.amjmed.2024.04.004. Epub ahead of print. PMID: 38583751. https://pubmed.ncbi.nlm.nih.gov/38583751/

Cognition and Memory after Covid-19 in a Large Community Sample

Abstract:

Background: Cognitive symptoms after coronavirus disease 2019 (Covid-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are well-recognized. Whether objectively measurable cognitive deficits exist and how long they persist are unclear.

Methods: We invited 800,000 adults in a study in England to complete an online assessment of cognitive function. We estimated a global cognitive score across eight tasks. We hypothesized that participants with persistent symptoms (lasting ≥12 weeks) after infection onset would have objectively measurable global cognitive deficits and that impairments in executive functioning and memory would be observed in such participants, especially in those who reported recent poor memory or difficulty thinking or concentrating (“brain fog”).

Results: Of the 141,583 participants who started the online cognitive assessment, 112,964 completed it. In a multiple regression analysis, participants who had recovered from Covid-19 in whom symptoms had resolved in less than 4 weeks or at least 12 weeks had similar small deficits in global cognition as compared with those in the no-Covid-19 group, who had not been infected with SARS-CoV-2 or had unconfirmed infection (-0.23 SD [95% confidence interval {CI}, -0.33 to -0.13] and -0.24 SD [95% CI, -0.36 to -0.12], respectively); larger deficits as compared with the no-Covid-19 group were seen in participants with unresolved persistent symptoms (-0.42 SD; 95% CI, -0.53 to -0.31). Larger deficits were seen in participants who had SARS-CoV-2 infection during periods in which the original virus or the B.1.1.7 variant was predominant than in those infected with later variants (e.g., -0.17 SD for the B.1.1.7 variant vs. the B.1.1.529 variant; 95% CI, -0.20 to -0.13) and in participants who had been hospitalized than in those who had not been hospitalized (e.g., intensive care unit admission, -0.35 SD; 95% CI, -0.49 to -0.20). Results of the analyses were similar to those of propensity-score-matching analyses. In a comparison of the group that had unresolved persistent symptoms with the no-Covid-19 group, memory, reasoning, and executive function tasks were associated with the largest deficits (-0.33 to -0.20 SD); these tasks correlated weakly with recent symptoms, including poor memory and brain fog. No adverse events were reported.

Conclusions: Participants with resolved persistent symptoms after Covid-19 had objectively measured cognitive function similar to that in participants with shorter-duration symptoms, although short-duration Covid-19 was still associated with small cognitive deficits after recovery. Longer-term persistence of cognitive deficits and any clinical implications remain uncertain. (Funded by the National Institute for Health and Care Research and others.).

Source: Hampshire A, Azor A, Atchison C, Trender W, Hellyer PJ, Giunchiglia V, Husain M, Cooke GS, Cooper E, Lound A, Donnelly CA, Chadeau-Hyam M, Ward H, Elliott P. Cognition and Memory after Covid-19 in a Large Community Sample. N Engl J Med. 2024 Feb 29;390(9):806-818. doi: 10.1056/NEJMoa2311330. PMID: 38416429. https://www.nejm.org/doi/10.1056/NEJMoa2311330 (Full text)

Post-COVID cognitive deficits at one year are global and associated with elevated brain injury markers and grey matter volume reduction: national prospective study

Abstract:

The spectrum, pathophysiology, and recovery trajectory of persistent post-COVID-19 cognitive deficits are unknown, limiting our ability to develop prevention and treatment strategies. We report the one-year cognitive, serum biomarker, and neuroimaging findings from a prospective, national longitudinal study of cognition in 351 COVID-19 patients who had required hospitalisation, compared to 2,927 normative matched controls.

Cognitive deficits were global and associated with elevated brain injury markers and reduced anterior cingulate cortex volume one year after admission. The severity of the initial infective insult, post-acute psychiatric symptoms, and a history of encephalopathy were associated with greatest deficits. There was strong concordance between subjective and objective cognitive deficits. Treatment with corticosteroids during the acute phase appeared protective against cognitive deficits. Together, these findings support the hypothesis that brain injury in moderate to severe COVID-19 is immune-mediated, and should guide the development of therapeutic strategies.

Source: Benedict Michael, Greta Wood, Brendan Sargent et al. Post-COVID cognitive deficits at one year are global and associated with elevated brain injury markers and grey matter volume reduction: national prospective study, 05 January 2024, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3818580/v1] https://www.researchsquare.com/article/rs-3818580/v1 (Full text)

Yeast Beta-Glucan Supplementation with Multivitamins Attenuates Cognitive Impairments in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial

Abstract:

This research aimed to examine the potential alleviative effects of beta-glucan administration on fatigue, unrefreshing sleep, anxiety/depression symptoms and health-related quality of life in ME/CFS. A 36-week unicenter, randomized, double-blind, placebo-controlled trial was conducted in 65 ME/CFS patients, who were randomly allocated to one of two arms to receive four capsules each one of 250 mg beta-glucan, 3.75 µg vitamin D3, 1.05 mg vitamin B6, and 7.5 mg zinc (n = 35), or matching placebo including only microcrystalline cellulose as an excipient (n = 30) once daily.

The findings showed that the beta-glucan supplementation significantly improved cognitive fatigue (assessed with FIS-40 scores) after the 36-week treatment compared to the baseline (p = 0.0338). Taken together, this study presents the novel finding that yeast-derived beta-glucan may alleviate cognitive fatigue symptoms in ME/CFS. Thus, it offers valuable scientific insights into the potential use of yeast beta-glucan as a nutritional supplement and/or functional food to prevent or reduce cognitive dysfunction in patients with ME/CFS. Further interventions are warranted to validate these findings and also to delve deeper into the possible immunometabolic pathomechanisms of beta-glucans in ME/CFS.

Source: Lacasa M, Alegre-Martin J, Sentañes RS, Varela-Sende L, Jurek J, Castro-Marrero J. Yeast Beta-Glucan Supplementation with Multivitamins Attenuates Cognitive Impairments in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients. 2023 Oct 24;15(21):4504. doi: 10.3390/nu15214504. PMID: 37960157. https://www.mdpi.com/2072-6643/15/21/4504 (Full text)

Neuropsychological measures of post-COVID-19 cognitive status

Abstract:

Background: COVID-19 may result in persistent symptoms in the post-acute phase, including cognitive and neurological ones. The aim of this study is to investigate the cognitive and neurological features of patients with a confirmed diagnosis of COVID-19 evaluated in the post-acute phase through a direct neuropsychological evaluation.

Methods: Individuals recovering from COVID-19 were assessed in an out-patient practice with a complete neurological evaluation and neuropsychological tests (Mini-Mental State Examination; Rey Auditory Verbal Test, Multiple Feature Target Cancellation Test, Trial Making Test, Digit Span Forward and Backward, and Frontal Assessment Battery). Pre- and post-COVID-19 global and mental health status was assessed along with the history of the acute phase of infection. Post-COVID-19 cognitive status was modeled by combining persistent self-reported COVID-related cognitive symptoms and pathologic neuropsychological tests.

Results: A total of 406 individuals (average age 54.5 ± 15.1 years, 45.1% women) were assessed on average at 97.8 ± 48.0 days since symptom onset. Persistent self-reported neurological symptoms were found in the areas of sleep (32%), attention (31%), and memory (22%). The MMSE mean score was 28.6. In total, 84 subjects (20.7%) achieved pathologic neuropsychological test results. A high prevalence of failed tests was found in digit span backward (18.7%), trail making (26.6%), and frontal assessment battery (10.9%). Cognitive status was associated with a number of factors including cardiovascular disease history, persistent fatigue, female sex, age, anxiety, and mental health stress.

Conclusion: COVID-19 is capable of eliciting persistent measurable neurocognitive alterations particularly relevant in the areas of attention and working memory. These neurocognitive disorders have been associated with some potentially treatable factors and others that may stratify risk at an early stage.

Source: Lauria A, Carfì A, Benvenuto F, Bramato G, Ciciarello F, Rocchi S, Rota E, Salerno A, Stella L, Tritto M, Di Paola A, Pais C, Tosato M, Janiri D, Sani G, Lo Monaco R, Pagano FC, Fantoni M, Bernabei R, Landi F, Bizzarro A; Gemelli Against COVID-19 Post-acute Care Group. Neuropsychological measures of post-COVID-19 cognitive status. Front Psychol. 2023 Jul 10;14:1136667. doi: 10.3389/fpsyg.2023.1136667. PMID: 37492442; PMCID: PMC10363721. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363721/ (Full text)

Neuroinflammation After COVID-19 With Persistent Depressive and Cognitive Symptoms

Abstract:

Importance: Persistent depressive symptoms, often accompanied by cognitive symptoms, commonly occur after COVID-19 illness (hereinafter termed COVID-DC, DC for depressive and/or cognitive symptoms). In patients with COVID-DC, gliosis, an inflammatory change, was suspected, but measurements of gliosis had not been studied in the brain for this condition.

Objective: To determine whether translocator protein total distribution volume (TSPO VT), a marker of gliosis that is quantifiable with positron emission tomography (PET), is elevated in the dorsal putamen, ventral striatum, prefrontal cortex, anterior cingulate cortex, and hippocampus of persons with COVID-DC.

Design, setting, and participants: This case-control study conducted at a tertiary care psychiatric hospital in Canada from April 1, 2021, to June 30, 2022, compared TSPO VT of specific brain regions in 20 participants with COVID-DC with that in 20 healthy controls. The TSPO VT was measured with fluorine F 18-labeled N-(2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide ([18F]FEPPA) PET.

Main outcomes and measures: The TSPO VT was measured in the dorsal putamen, ventral striatum, prefrontal cortex, anterior cingulate cortex, and hippocampus. Symptoms were measured with neuropsychological and psychological tests, prioritizing outcomes related to striatal function.

Results: The study population included 40 participants (mean [SD] age, 32.9 [12.3] years). The TSPO VT across the regions of interest was greater in persons with COVID-DC (mean [SD] age, 32.7 [11.4] years; 12 [60%] women) compared with healthy control participants (mean [SD] age, 33.3 [13.9] years; 11 [55%] women): mean (SD) difference, 1.51 (4.47); 95% CI, 0.04-2.98; 1.51 divided by 9.20 (17%). The difference was most prominent in the ventral striatum (mean [SD] difference, 1.97 [4.88]; 95% CI, 0.36-3.58; 1.97 divided by 8.87 [22%]) and dorsal putamen (mean difference, 1.70 [4.25]; 95% CI, 0.34-3.06; 1.70 divided by 8.37 [20%]). Motor speed on the finger-tapping test negatively correlated with dorsal putamen TSPO VT (r, -0.53; 95% CI, -0.79 to -0.09), and the 10 persons with the slowest speed among those with COVID-DC had higher dorsal putamen TSPO VT than healthy persons by 2.3 (2.30 divided by 8.37 [27%]; SD, 2.46; 95% CI, 0.92-3.68).

Conclusions and relevance: In this case-control study, TSPO VT was higher in patients with COVID-DC. Greater TSPO VT is evidence for an inflammatory change of elevated gliosis in the brain of an individual with COVID-DC. Gliosis may be consequent to inflammation, injury, or both, particularly in the ventral striatum and dorsal putamen, which may explain some persistent depressive and cognitive symptoms, including slowed motor speed, low motivation or energy, and anhedonia, after initially mild to moderate COVID-19 illness.

Source: Braga J, Lepra M, Kish SJ, Rusjan PM, Nasser Z, Verhoeff N, Vasdev N, Bagby M, Boileau I, Husain MI, Kolla N, Garcia A, Chao T, Mizrahi R, Faiz K, Vieira EL, Meyer JH. Neuroinflammation After COVID-19 With Persistent Depressive and Cognitive Symptoms. JAMA Psychiatry. 2023 May 31:e231321. doi: 10.1001/jamapsychiatry.2023.1321. Epub ahead of print. PMID: 37256580; PMCID: PMC10233457. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233457/ (Full text)

Long-Term Headache and Cognitive Complaints Among Health Care Workers Who Acquired SARS-CoV-2

Abstract:

Introduction: Neurological manifestations are frequent after acquiring COVID-19 and may persist long-term as part of post-COVID-19 syndrome. Cognitive impairment, chronic fatigue, sleep disturbances, and headache complaints are the most reported neurological features. During the COVID-19 pandemic, health care workers were particularly vulnerable due to the high workload and levels of stress associated with this period, but acquiring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may also contribute. The authors aimed to evaluate the neurological involvement of acquiring SARS-CoV-2 in a population of hospital health care workers and its impact on their personal and professional lives.

Methods: A sample of health care workers who did and did not acquire SARS-CoV-2 matched by age and sociodemographic variables was studied. Through an online questionnaire, data were collected regarding the symptoms in the acute phase of the disease (for those who acquired it) and for all in the last 6 months of the study period. Proportion of neurological complaints were compared between groups, adjusting for age, sex, and professional class (using a rate ratio (RR)).

Results: This study included 326 participants (174 cases and 152 controls). The mean age (standard deviation) was 39.7 (10.2) years, and the female:male ratio was 3:1. Headache and cognitive complaints were the most prevalent neurological complaints in the last 6 months of the study period. The health care workers who acquired SARS-CoV-2 were more likely to report headache and cognitive complaints than the control group (RR = 1.51, 95% confidence interval = 1.17-1.9 and RR = 2.02, 95% confidence interval = 1.53-2.65, respectively).

Conclusion: In a population of health care workers, those who acquired SARS-CoV-2 were more likely to have long-term cognitive complaints and persistent headaches.

Source: Marques AJ, Costa A, Almendra R, Maia L, Magalhães R, Cavaco S, Oliveira V, Correia M, Mendes M, Veiga A. Long-Term Headache and Cognitive Complaints Among Health Care Workers Who Acquired SARS-CoV-2. Perm J. 2023 May 29:1-8. doi: 10.7812/TPP/22.171. Epub ahead of print. PMID: 37246366. https://www.thepermanentejournal.org/doi/10.7812/TPP/22.171 (Full text)

Impaired health-related quality of life in long-COVID syndrome after mild to moderate COVID-19

Abstract:

A growing number of patients with SARS-CoV-2 infections experience long-lasting symptoms. Even patients who suffered from a mild acute infection show a variety of persisting and debilitating neurocognitive, respiratory, or cardiac symptoms (Long-Covid syndrome), consequently leading to limitations in everyday life. Because data on health-related quality of life (HRQoL) is scarce, we aimed to characterize the impact of Long-Covid symptoms after a mild or moderate acute infection on HRQoL.

In this observational study, outpatients seeking counseling in the interdisciplinary Post-Covid consultation of the University Hospital Zurich with symptoms persisting for more than 4 weeks were included. Patients who received an alternative diagnosis or suffered from a severe acute Covid-19 infection were excluded. St. George’s Respiratory Questionnaire (SGRQ), Euroquol-5D-5L (EQ-5D-5L), and the Short form 36 (SF-36) were distributed to assess HRQoL. 112 patients were included, 86 (76.8%) were female, median (IQR) age was 43 (32.0, 52.5) years with 126 (91, 180) days of symptoms.

Patients suffered frequently from fatigue (81%), concentration difficulties (60%), and dyspnea (60%). Patients mostly stated impairment in performing usual activities and having pain/discomfort or anxiety out of the EQ-5D-5L. EQ index value and SGRQ activity score component were significantly lower in females. SF-36 scores showed remarkably lower scores in the physical health domain compared to the Swiss general population before and during the COVID-19 pandemic.

Long-Covid syndrome has a substantial impact on HRQoL. Long-term surveillance of patients must provide clarity on the duration of impairments in physical and mental health.

Trial registration: The study is registered on www.ClinicalTrials.gov , NCT04793269.

Source: Malesevic S, Sievi NA, Baumgartner P, Roser K, Sommer G, Schmidt D, Vallelian F, Jelcic I, Clarenbach CF, Kohler M. Impaired health-related quality of life in long-COVID syndrome after mild to moderate COVID-19. Sci Rep. 2023 May 12;13(1):7717. doi: 10.1038/s41598-023-34678-8. PMID: 37173355; PMCID: PMC10175927. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175927/ (Full text)

Long COVID: Cognitive and FDG PET evolutions in six patients

Abstract:

Long COVID is often characterized by cognitive complaints and deficits occurring immediately or several weeks after the infectious disease. Neuropsychological tests can revealed attention and executive function anomalies and FDG PET can display hypometabolic areas affecting various regions including frontal and cingulate cortices as well as precuneus and brainstem. We report here the cognitive and FDG PET evolutions over one year in 6 patients suffering from long COVID. Our study shows cognitive and FDG PET improvements in most of the cases and highlight the importance of a careful neurological follow-up in these patients.

Source: Jacques Hugon, Karim Farid, Mathieu Queneau et al. Long COVID: Cognitive and FDG PET evolutions in six patients, 03 April 2023, PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-2703691/v1 https://www.researchsquare.com/article/rs-2703691/v1 (Full text)