Evidence of a Novel Mitochondrial Signature in Systemic Sclerosis Patients with Chronic Fatigue Syndrome

Abstract:

Symptoms of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are common in rheumatic diseases, but no studies report the frequency of these in early systemic sclerosis. There are no known biomarkers that can distinguish between patients with ME/CFS, although mitochondrial abnormalities are often demonstrated.

We sought to assess the prevalence of ME/CFS in limited cutaneous SSc (lcSSc) patients early in their disease (<5 years from the onset of non-Raynaud’s symptoms) and to determine if alterations in mitochondrial electron transport chain (ETC) transcripts and mitochondrial DNA (mtDNA) integrity could be used to distinguish between fatigued and non-fatigued patients.

All SSc patients met ACR/EULAR classification criteria. ME/CFS-related symptoms were assessed through validated questionnaires, and the expression of ETC transcripts and mtDNA integrity were quantified via qPCR.

SSc patients with ME/CFS could be distinguished from non-fatigued patients through ETC gene analysis; specifically, reduced expression of ND4 and CyB and increased expression of Cox7C. ND4 and CyB expression correlated with indicators of disease severity.

Further prospective and functional studies are needed to determine if this altered signature can be further utilized to better identify ME/CFS in SSc patients, and whether ME/CFS in early SSc disease could predict more severe disease outcomes.

Source: van Eeden C, Redmond D, Mohazab N, Larché MJ, Mason AL, Cohen Tervaert JW, Osman MS. Evidence of a Novel Mitochondrial Signature in Systemic Sclerosis Patients with Chronic Fatigue Syndrome. International Journal of Molecular Sciences. 2023; 24(15):12057. https://doi.org/10.3390/ijms241512057 https://www.mdpi.com/1422-0067/24/15/12057 (Full text)

System and methods to determine ME/CFS & Long Covid disease severity using wearable sensor & survey data

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with high probability of misdiagnosis and significant unmet medical needs that affects as many as 2.5 million people in the U.S. and causes enormous burden for patients, their caregivers, the healthcare system and society. Between 84 to 91 percent of ME/CFS patients are not yet diagnosed [6, 19], and at least one-quarter of ME/CFS patients are house- or bedbound at some point in their lives [12, 13]. The impact of ME/CFS to the U.S. economy, is about $17 to $24 billion in medical bills and lost income from lost household and labor force productivity per year [7, 13].

Current widely used diagnosis methods of ME/CFS and other diseases with similar clinical symptoms like Long COVID [6, 21] are highly dependent on patients’ self reporting [4, 5] and standardized survey, which are not optimal for medical diagnosis. In a joint study with The Bateman Horne Center (BHC)1, we designed and developed a system prototype that was able to stably collect terabytes of inertial measurement unit (IMU) time-series data, and analyzed multiple candidate parameters derived from them that could be used as reliable biomarkers for ME/CFS and other diseases with similar clinical symptoms.

Utilizing our system prototype, MetaProcessor, we conducted grouped t-tests on data collected from the EndoPAT study group (55 recruited, 51 participated, 30 ME/CFS, 15 Long COVID, 6 healthy control) to evaluate the predictive power of Upright Position Time (UpTime), Hours of Upright Activity (HUA), and Steps/Day. Through statistical analysis, we were able to assert the following for ME/CFS versus healthy control:

1. UpTime yielded a low p-value of 0.00004, indicating a significant difference between the groups and demonstrating its potential as a reliable measure for differentiating ME/CFS from healthy control populations.

2. HUA had a p-value of less than 0.00004, suggesting it could also serve as a useful measure for distinguishing ME/CFS from healthy control groups.

3. Steps/Day, x-axis and y-axis, had p-values of 0.01059 and 0.08665, respectively, indicating that step count may be relevant for differentiating ME/CFS individuals from healthy controls, but step count alone may not be sufficient to reliably distinguish between these groups.

In a linear regression analysis, we found a moderately positive correlation between UpTime and HUA with r 2 = 0.68. Overall, we can confidently conclude that UpTime is a superior overall predictor due to its objective nature and the lowest p-values observed across all groups.

Source: System and methods to determine ME/CFS & Long Covid disease severity using wearable sensor & survey data. Sun, Y. Thesis, Bachelor of Science, The University of Utah. https://ccs.neu.edu/~ysun/publications/system-and-methods-to-determine-mecfs-and-longcovid-disease-severity-using-wearable-sensor-and-survey-data.pdf (Full text)

Bioimpedance spectroscopy characterization of osmotic stress processes in Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME-CFS) blood samples

Abstract:

Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME/ CFS) is a disabling, chronic, multi-system and complex disease. Currently, there are no specific laboratory tests to directly [diagnose ME/CFS](https://www.cdc.gov/me-cfs/symptoms-diagnosis/diagnosis.html). In this work we study the use of impedance spectroscopy as a potential technique for the diagnosis of this disease. A specific device for the electrical characterization of peripheral blood mononuclear cells was designed and implemented.

Impedance spectroscopy measurements in the range from 1 Hz to 500 MHz were made after osmotic stress of the samples with sodium chloride solution 1M. The evolution in time after the osmotic stress at two specific frequencies (1.36 kHz and 154 kHz) was analysed. The device showed its sensitivity to the presence of cells and the evolution of the osmotic process. Higher values of impedance were measured for 1.36 kHz in ME/CFS patients compared to control samples. Results help to further understand the relation of bioimpedance measurements with ME/CFS samples physical properties and osmotic processes.

Source: Alberto Olmo Fernández, Sara Martínez Rodríguez, Daniel Martín Fernández, et al. Bioimpedance spectroscopy characterization of osmotic stress processes in Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME-CFS) blood samples. Authorea. July 11, 2023.
DOI: 10.22541/au.168909663.38868952/v1 https://www.authorea.com/doi/full/10.22541/au.168909663.38868952/v1 (Full text)

Circulating miRNAs Expression in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multifactorial disease that causes increasing morbidity worldwide, and many individuals with ME/CFS symptoms remain undiagnosed due to the lack of diagnostic biomarkers. Its etiology is still unknown, but increasing evidence supports a role of herpesviruses (including HHV-6A and HHV-6B) as potential triggers.
Interestingly, the infection by these viruses has been reported to impact the expression of microRNAs (miRNAs), short non-coding RNA sequences which have been suggested to be epigenetic factors modulating ME/CFS pathogenic mechanisms. Notably, the presence of circulating miRNAs in plasma has raised the possibility to use them as valuable biomarkers for distinguishing ME/CFS patients from healthy controls.
Thus, this study aimed at determining the role of eight miRNAs, which were selected for their previous association with ME/CFS, as potential circulating biomarkers of the disease. Their presence was quantitatively evaluated in plasma from 40 ME/CFS patients and 20 healthy controls by specific Taqman assays, and the results showed that six out of the eight of the selected miRNAs were differently expressed in patients compared to controls; more specifically, five miRNAs were significantly upregulated (miR-127-3p, miR-142-5p, miR-143-3p, miR-150-5p, and miR-448), and one was downmodulated (miR-140-5p). MiRNA levels directly correlated with disease severity, whereas no significant correlations were observed with the plasma levels of seven pro-inflammatory cytokines or with the presence/load of HHV-6A/6B genome, as judged by specific PCR amplification.
The results may open the way for further validation of miRNAs as new potential biomarkers in ME/CFS and increase the knowledge of the complex pathways involved in the ME/CFS development.
Source: Soffritti I, Gravelsina S, D’Accolti M, Bini F, Mazziga E, Vilmane A, Rasa-Dzelzkaleja S, Nora-Krukle Z, Krumina A, Murovska M, et al. Circulating miRNAs Expression in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. International Journal of Molecular Sciences. 2023; 24(13):10582. https://doi.org/10.3390/ijms241310582 https://www.mdpi.com/1422-0067/24/13/10582 (Full text)

Comparison of serum acylcarnitine levels in patients with myalgic encephalomyelitis/chronic fatigue syndrome and healthy controls: a systematic review and meta-analysis

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome/systemic exertion intolerance disease (ME/CFS/SEID) is a condition diagnosed primarily based on clinical symptoms, including prolonged fatigue and post-exertional malaise; however, there is no specific test for the disease. Additionally, diagnosis can be challenging since healthcare professionals may lack sufficient knowledge about the disease. Prior studies have shown that patients with ME/CFS/SEID have low serum acylcarnitine levels, which may serve as a surrogate test for patients suspected of having this disease. This systematic review and meta-analysis aimed to investigate the differences in serum acylcarnitine levels between patients with ME/CFS/SEID and healthy controls.

Methods: This systematic review was conducted using PubMed and Ichushi-Web databases. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, we included all studies from the databases’ inception until February 17, 2023, that evaluated blood tests in both patients with ME/CFS/SEID and healthy control groups. The primary endpoint was the difference in serum acylcarnitine levels between the two groups.

Results: The electronic search identified 276 studies. Among them, seven met the eligibility criteria. The serum acylcarnitine levels were analyzed in 403 patients with ME/CFS/SEID. The patient group had significantly lower serum acylcarnitine levels when compared with the control group, and the statistical heterogeneity was high.

Conclusion: The patient group had significantly lower serum acylcarnitine levels when compared with the control group. In the future, the measurement of serum acylcarnitine levels, in addition to clinical symptoms, may prove to be a valuable diagnostic tool for this condition.

Source: Jinushi R, Masuda S, Tanisaka Y, Nishiguchi S, Shionoya K, Sato R, Sugimoto K, Shin T, Shiomi R, Fujita A, Mizuide M, Ryozawa S. Comparison of serum acylcarnitine levels in patients with myalgic encephalomyelitis/chronic fatigue syndrome and healthy controls: a systematic review and meta-analysis. J Transl Med. 2023 Jun 19;21(1):398. doi: 10.1186/s12967-023-04226-z. PMID: 37337273; PMCID: PMC10280864. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280864/ (Full text)

A Unique Circular RNA Expression Pattern in the Peripheral Blood of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with obscure aetiology. The underdiagnosis rate of ME/CFS is high due to the lack of diagnostic criteria based on objective markers. In recent years, circRNAs have emerged as potential genetic biomarkers for neurological diseases, including Parkinson’s disease and Alzheimer’s disease, making them likely to have the same prospect of being biomarkers in ME/CFS. However, despite the extensive amount of research that has been performed on the transcriptomes of ME/CFS patients, all of them are solely focused on linear RNAs, and the profiling of circRNAs in ME/CFS has been completely omitted. In this study, we investigated the expression profiles of circRNAs, comparing ME/CFS patients and controls before and after two sessions of cardiopulmonary exercise longitudinally.

In patients with ME/CFS, the number of detected circRNAs was higher compared to healthy controls, indicating potential differences in circRNA expression associated with the disease. Additionally, healthy controls showed an increase in the number of circRNAs following exercise testing, while no similar pattern was evident in ME/CFS patients, further highlighting physiological differences between the two groups. A lack of correlation was observed between differentially expressed circRNAs and their corresponding coding genes in terms of expression and function, suggesting the potential of circRNAs as independent biomarkers in ME/CFS.

Specifically, 14 circRNAs were highly expressed in ME/CFS patients but absent in controls throughout the exercise study, indicating a unique molecular signature specific to ME/CFS patients and providing potential diagnostic biomarkers for the disease. Significant enrichment of protein and gene regulative pathways were detected in relation to five of these 14 circRNAs based on their predicted miRNA target genes. Overall, this is the first study to describe the circRNA expression profile in peripheral blood of ME/CFS patients, providing valuable insights into the molecular mechanisms underlying the disease.

Source: Yuning Cheng, Si-Mei Xu, Konii Takenaka, Grace Lindner, Ashton Curry-Hyde, Michael Janitz. A Unique Circular RNA Expression Pattern in the Peripheral Blood of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Gene. Available online 15 June 2023, 147568. https://doi.org/10.1016/j.gene.2023.147568 https://www.sciencedirect.com/science/article/abs/pii/S0378111923004092

Free-water-corrected diffusion and adrenergic/muscarinic antibodies in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Background and purpose: Free-water-corrected diffusion tensor imaging (FW-DTI), a new analysis method for diffusion MRI, can indicate neuroinflammation and degeneration. There is increasing evidence of autoimmune etiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We used FW-DTI and conventional DTI to investigate microstructural brain changes related to autoantibody titers in patients with ME/CFS.

Methods: We prospectively examined 58 consecutive right-handed ME/CFS patients who underwent both brain MRI including FW-DTI and a blood analysis of autoantibody titers against β1 adrenergic receptor (β1 AdR-Ab), β2 AdR-Ab, M3 acetylcholine receptor (M3 AchR-Ab), and M4 AchR-Ab. We investigated the correlations between these four autoantibody titers and three FW-DTI indices-free water (FW), FW-corrected fractional anisotropy (FAt), and FW-corrected mean diffusivity-as well as two conventional DTI indices-fractional anisotropy (FA) and mean diffusivity. The patients’ age and gender were considered as nuisance covariates. We also evaluated the correlations between the FW-DTI indices and the performance status and disease duration.

Results: Significant negative correlations between the serum levels of several autoantibody titers and DTI indices were identified, mainly in the right frontal operculum. The disease duration showed significant negative correlations with both FAt and FA in the right frontal operculum. The changes in the FW-corrected DTI indices were observed over a wider extent compared to the conventional DTI indices.

Conclusions: These results demonstrate the value of using DTI to assess the microstructure of ME/CFS. The abnormalities of right frontal operculum may be a diagnostic marker for ME/CFS.

Source: Kimura Y, Sato W, Maikusa N, Ota M, Shigemoto Y, Chiba E, Arizono E, Maki H, Shin I, Amano K, Matsuda H, Yamamura T, Sato N. Free-water-corrected diffusion and adrenergic/muscarinic antibodies in myalgic encephalomyelitis/chronic fatigue syndrome. J Neuroimaging. 2023 May 27. doi: 10.1111/jon.13128. Epub ahead of print. PMID: 37243973. https://pubmed.ncbi.nlm.nih.gov/37243973/

Biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a systematic review

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multifaceted condition that affects most body systems. There is currently no known diagnostic biomarker; instead, diagnosis is dependent on application of symptom-based case criteria following exclusion of any other potential medical conditions. While there are some studies that report potential biomarkers for ME/CFS, their efficacy has not been validated. The aim of this systematic review is to collate and appraise literature pertaining to a potential biomarker(s) which may effectively differentiate ME/CFS patients from healthy controls.

Methods: This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Cochrane review guidelines. PubMed, Embase and Scopus were systematically searched for articles containing “biomarker” and “ME/CFS” keywords in the abstract or title and if they included the following criteria: (1) were observational studies published between December 1994 and April 2022; (2) involved adult human participants; (3) full text is available in English (4) original research; (5) diagnosis of ME/CFS patients made according to the Fukuda criteria (1994), Canadian Consensus Criteria (2003), International Consensus Criteria (2011) or Institute of Medicine Criteria (2015); (6) study investigated potential biomarkers of ME/CFS compared to healthy controls. Quality and Bias were assessed using the Joanna Briggs Institute Critical Appraisal Checklist for Case Control Studies.

Results: A total of 101 publications were included in this systematic review. Potential biomarkers ranged from genetic/epigenetic (19.8%), immunological (29.7%), metabolomics/mitochondrial/microbiome (14.85%), endovascular/circulatory (17.82%), neurological (7.92%), ion channel (8.91%) and physical dysfunction biomarkers (8.91%). Most of the potential biomarkers reported were blood-based (79.2%). Use of lymphocytes as a model to investigate ME/CFS pathology was prominent among immune-based biomarkers. Most biomarkers had secondary (43.56%) or tertiary (54.47%) selectivity, which is the ability for the biomarker to identify a disease-causing agent, and a moderate (59.40%) to complex (39.60%) ease-of-detection, including the requirement of specialised equipment.

Conclusions: All potential ME/CFS biomarkers differed in efficiency, quality, and translatability as a diagnostic marker. Reproducibility of findings between the included publications were limited, however, several studies validated the involvement of immune dysfunction in the pathology of ME/CFS and the use of lymphocytes as a model to investigate the pathomechanism of illness. The heterogeneity shown across many of the included studies highlights the need for multidisciplinary research and uniform protocols in ME/CFS biomarker research.

Source: Maksoud R, Magawa C, Eaton-Fitch N, Thapaliya K, Marshall-Gradisnik S. Biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a systematic review. BMC Med. 2023 May 24;21(1):189. doi: 10.1186/s12916-023-02893-9. PMID: 37226227; PMCID: PMC10206551. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10206551/ (Full text)

Ginsenoside Rg1 can reverse fatigue behavior in CFS rats by regulating EGFR and affecting Taurine and Mannose 6-phosphate metabolism

Abstract:

Background: Chronic fatigue syndrome (CFS) is characterized by significant and persistent fatigue. Ginseng is a traditional anti-fatigue Chinese medicine with a long history in Asia, as demonstrated by clinical and experimental studies. Ginsenoside Rg1 is mainly derived from ginseng, and its anti-fatigue metabolic mechanism has not been thoroughly explored.

Methods: We performed non-targeted metabolomics of rat serum using LC-MS and multivariate data analysis to identify potential biomarkers and metabolic pathways. In addition, we implemented network pharmacological analysis to reveal the potential target of ginsenoside Rg1 in CFS rats. The expression levels of target proteins were measured by PCR and Western blotting.

Results: Metabolomics analysis confirmed metabolic disorders in the serum of CFS rats. Ginsenoside Rg1 can regulate metabolic pathways to reverse metabolic biases in CFS rats. We found a total of 34 biomarkers, including key markers Taurine and Mannose 6-phosphate. AKT1, VEGFA and EGFR were identified as anti-fatigue targets of ginsenoside Rg1 using network pharmacological analysis. Finally, biological analysis showed that ginsenoside Rg1 was able to down-regulate the expression of EGFR.

Conclusion: Our results suggest ginsenoside Rg1 has an anti-fatigue effect, impacting the metabolism of Taurine and Mannose 6-phosphate through EGFR regulation. This demonstrates ginsenoside Rg1 is a promising alternative treatment for patients presenting with chronic fatigue syndrome.

Source: Lei C, Chen J, Huang Z, Men Y, Qian Y, Yu M, Xu X, Li L, Zhao X, Jiang Y, Liu Y. Ginsenoside Rg1 can reverse fatigue behavior in CFS rats by regulating EGFR and affecting Taurine and Mannose 6-phosphate metabolism. Front Pharmacol. 2023 Apr 10;14:1163638. doi: 10.3389/fphar.2023.1163638. PMID: 37101547; PMCID: PMC10123289. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10123289/ (Full text)

Serum GDF-15 Levels Accurately Differentiate Patients with Primary Mitochondrial Myopathy, Manifesting with Exercise Intolerance and Fatigue, from Patients with Chronic Fatigue Syndrome

Abstract:

Primary mitochondrial myopathies (PMM) are a clinically and genetically highly heterogeneous group that, in some cases, may manifest exclusively as fatigue and exercise intolerance, with minimal or no signs on examination. On these occasions, the symptoms can be confused with the much more common chronic fatigue syndrome (CFS).
Nonetheless, other possibilities must be excluded for the final diagnosis of CFS, with PMM being one of the primary differential diagnoses. For this reason, many patients with CFS undergo extensive studies, including extensive genetic testing and muscle biopsies, to rule out this possibility.
This study evaluated the diagnostic performance of growth differentiation factor-15 (GDF-15) as a potential biomarker to distinguish which patient with chronic fatigue has a mitochondrial disorder. We studied 34 adult patients with symptoms of fatigue and exercise intolerance with a definitive diagnosis of PMM (7), CFS (22), or other non-mitochondrial disorders (5).
The results indicate that GDF-15 can accurately discriminate between patients with PMM and CFS (AUC = 0.95) and between PMM and patients with fatigue due to other non-mitochondrial disorders (AUC = 0.94). Therefore, GDF-15 emerges as a promising biomarker to select which patients with fatigue should undergo further studies to exclude mitochondrial disease.
Source: Bermejo-Guerrero L, de Fuenmayor-Fernández de la Hoz CP, Guerrero-Molina MP, Martín-Jiménez P, Blázquez A, Serrano-Lorenzo P, Lora D, Morales-Conejo M, González-Martínez I, López-Jiménez EA, Martín MA, Domínguez-González C. Serum GDF-15 Levels Accurately Differentiate Patients with Primary Mitochondrial Myopathy, Manifesting with Exercise Intolerance and Fatigue, from Patients with Chronic Fatigue Syndrome. Journal of Clinical Medicine. 2023; 12(6):2435. https://doi.org/10.3390/jcm12062435 (Full text)