Wearable heart rate variability monitoring identifies autonomic dysfunction and thresholds for post-exertional malaise in Long COVID

Abstract:

Objectives Patients with Long COVID experience disabling fatigue, autonomic dysfunction, reduced exercise capacity, and post-exertional malaise (PEM). Heart rate variability (HRV) can evaluate autonomic function and monitor overexertion, potentially helping to mitigate PEM. This study aimed to use continuous multi-day HRV recordings to monitor overexertion and study autonomic function in Long COVID.

Method Heart rate and HRV were continuously measured in 127 patients with long COVID (43±11 years, 32% male) and 21 healthy controls (42±13 years, 48% male), and daily life activities tracked in a logbook. Participants underwent a (sub)maximal cardiopulmonary exercise test to determine heart rate at the first ventilatory threshold (VT1) to study HRV responses to exercise at different intensities.

Results HRV was lower in patients with long COVID compared to healthy controls during various daily activities and sleep (p<0.027). HRV remained lower for 24 hours after exercise below, at or above VT1 in patients, but not in healthy controls (p=0.010). Nighttime HRV decreased with intense exercise and longer durations in patients with long COVID (p=0.018), indicative of exercise-induced diurnal disturbances of the autonomic nervous system in long COVID.

Conclusion Heart rate variability, assessed by wearables, confirms autonomic dysfunction in patients with long COVID. The delayed recovery of the sympathovagal balance after exercise close and above to VT1 suggests that VT1 can be practically interpreted as a PEM threshold.

Application These results confirm the applicability of wearables to assess autonomic function and manage overexertion in long COVID patients.

What is already known on this topic Patients with long COVID often experience fatigue, autonomic dysfunction, and post-exertional malaise (PEM). HRV can be used as a non-invasive tool to measure autonomic function and recovery. Anecdotal evidence suggests lower HRV in patients with long COVID, but measurements are usually very short.

What this study adds This study demonstrates that continuous HRV monitoring through wearables can effectively identify overexertion and autonomic dysfunction during daily activities in patients with long COVID. Patients with long COVID have a lower heart rate variability during sleep and HRV remained significantly lower for a longer period after moderate-to-heavy exercise, that is generally associated with the induction of post-exertional malaise.

How this study might affect research, practice, or policy This study supports the use of wearables for assessing autonomic function and overexertion in daily life, helping patients with long COVID in pacing daily activities to mitigate symptoms of post-exertional malaise. HRV tracking after exercise shows that VT1 is a potential threshold for PEM. Sports physicians and physiotherapists can incorporate HRV biofeedback measures into pacing advice to patients. Additional research is needed to further investigate the effect of such an intervention.

Source: Twan RuijgtAnouk SlaghekkeAnneke EllensKasper W. JanssenRob C.I. Wüst.. Wearable heart rate variability monitoring identifies autonomic dysfunction and thresholds for post-exertional malaise in Long COVID.

Brainstem Reduction and Deformation in the 4th Ventricle Cerebellar Peduncles in Long COVID Patients: Insights into Neuroinflammatory Sequelae and “Broken Bridge Syndrome”

Abstract:

Post-COVID Syndrome (PCS), also known as Long COVID, is characterized by persistent and often debilitating neurological sequelae, including fatigue, cognitive dysfunction, motor deficits, and autonomic dysregulation (Dani et al., 2021). This study investigates structural and functional alterations in the brainstem and cerebellar peduncles of individuals with PCS using diffusion tensor imaging (DTI) and volumetric analysis. Forty-four PCS patients (15 bedridden) and 14 healthy controls underwent neuroimaging. Volumetric analysis focused on 22 brainstem regions, including the superior cerebellar peduncle (SCP), middle cerebellar peduncle (MCP), periaqueductal gray (PAG), and midbrain reticular formation (mRt).

Significant volume reductions were observed in the SCP (p < .001, Hedges’ g = 3.31) and MCP (p < .001, Hedges’ g = 1.77), alongside decreased fractional anisotropy (FA) in the MCP, indicative of impaired white matter integrity. FA_Avg fractional anisotropy average tested by FreeSurfer Tracula, is an index of white matter integrity, reflecting axonal fiber density, axonal diameter and myelination. These neuroimaging findings correlated with clinical manifestations of motor incoordination, proprioceptive deficits, and autonomic instability. Furthermore, volume loss in the dorsal raphe (DR) and midbrain reticular formation suggests disruption of pain modulation and sleep-wake cycles, consistent with patient-reported symptoms.

Post-mortem studies provide supporting evidence for brainstem involvement in COVID-19. Radtke et al. (2024) reported activation of intracellular signaling pathways and release of immune mediators in brainstem regions of deceased COVID-19 patients, suggesting an attempt to inhibit viral spread. While viral genetic material was detectable, infected neurons were not observed. Matschke et al. (2020) found that microglial activation and cytotoxic T lymphocyte infiltration were predominantly localized to the brainstem and cerebellum, with limited involvement of the frontal lobe. This aligns with clinical observations implicating the brainstem in PCS pathophysiology. Cell-specific expression analysis of genes contributing to viral entry (ACE2, TMPRSS2, TPCN2, TMPRSS4, NRP1, CTSL) in the cerebral cortex showed their presence in neurons, glial cells, and endothelial cells, indicating the potential for SARS-CoV-2 infection of these cell types. Associations with autoimmune diseases with specific autoantibodies, including beta-2 and M-2 against G-protein coupled alpha-1, beta-1, beta-2 adrenoceptors against angiotensin II type 1 receptor or M1,2,3-mAChR, among others, voltage-gated calcium channels (VGCC) are known (Blitshteyn et al. 2015 and Wallukat and Schminke et al. 2014).

These findings support the “Broken Bridge Syndrome” hypothesis, positing that structural disconnections between the brainstem and cerebellum contribute to PCS symptomatology. Furthermore, we propose that chronic activation of the Extended Autonomic System (EAS), encompassing the hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system, may perpetuate these symptoms (Goldstein, 2020). Perturbations in this system may relate to the elevation of toxic autoantibodies AABs (Beta-2 and M-2), specific epitopes of the COVID virus’s SPIKE protein and Cytokine storm of IL-1, IL-6, and IL-8 in their increased numbers (1,000->10,000)

Further research is warranted to elucidate the underlying neuroinflammatory mechanisms, EAS dysregulation, and potential therapeutic interventions for PCS

Source: Ziaja Peter Christof, Young Yvette Susanne, Stark Sadre-Chirazi Michael, Lindner Thomas, Zurék Grzegorz, Sedlacik Jan. Brainstem Reduction and Deformation in the 4th Ventricle Cerebellar Peduncles in Long COVID Patients: Insights into Neuroinflammatory Sequelae and “Broken Bridge Syndrome” medRxiv 2025.04.08.25325108; doi: https://doi.org/10.1101/2025.04.08.25325108 https://www.medrxiv.org/content/10.1101/2025.04.08.25325108v1.full-text (Full text)

Small fiber neuropathy in the post-COVID condition and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Clinical significance and diagnostic challenges

Abstract:

Background: Patients with post-COVID condition (PCC) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) experience symptoms potentially associated with small fiber neuropathy (SFN).

Methods: A sample of 90 participants, comprising 30 PCC patients, 30 ME/CFS patients, and 30 healthy controls (HC), matched by sex and age, was assessed. Neuropathic, autonomic, and fatigue symptoms were measured with TaskForce Monitor, the Sudoscan, heat and cold evoked potentials, In Vivo Corneal Confocal Microscopy (IVCCM), and specialized questionaries.

Results: PCC and ME/CFS patients demonstrated significantly higher levels of autonomic symptoms (H = 39.89, p < 0.001), neuropathic symptoms (H = 48.94, p < 0.001), and fatigue (H = 49.29, p < 0.001) compared to HC. Quantitative sensory testing revealed significant differences in heat detection thresholds between PCC patients and HC (F = 4.82; p < 0.01). Regarding corneal small fiber tortuosity, there were statistically significant differences between patients and HC (F = 6.80; p < 0.01), indicating pathological responses in patients. Small fiber tortuosity in IVCCM was identified as the main discriminator between patients and HC (AUC = 0.720; p < 0.01).

Conclusion: PCC and ME/CFS patients demonstrated sensory SFN, as evidenced by impaired heat detection and increased tortuosity of small fibers in the central corneal subbasal plexus. The findings underscore the importance of a multimodal approach to comprehensively detect and characterize SFN. This study provides valuable scientific insights into the neuropathic manifestations associated with these conditions.

Source: Azcue N, Teijeira-Portas S, Tijero-Merino B, Acera M, Fernández-Valle T, Ayala U, Barrenechea M, Murueta-Goyena A, Lafuente JV, de Munain AL, Ruiz-Irastorza G, Martín-Iglesias D, Gabilondo I, Gómez-Esteban JC, Del Pino R. Small fiber neuropathy in the post-COVID condition and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Clinical significance and diagnostic challenges. Eur J Neurol. 2025 Feb;32(2):e70016. doi: 10.1111/ene.70016. PMID: 39888240. https://onlinelibrary.wiley.com/doi/10.1111/ene.70016 (Full text)

A Case Report of Chronic Epipharyngitis With Chronic Fatigue Treated With Epipharyngeal Abrasive Therapy (EAT)

Abstract:

A case of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) with chronic epipharyngitis was treated with epipharyngeal abrasive therapy (EAT). The symptoms of ME/CFS improved along with the improvement of chronic epipharyngitis. The patient was followed up with endocrine and autonomic function tests.

Endocrine function tests included salivary cortisol and salivary α-amylase activity. Salivary α-amylase activity was stimulated by EAT. EAT improved the diurnal variability of salivary cortisol secretion. Autonomic function tests included heart rate variability analysis by orthostatic stress test. EAT normalized parasympathetic and sympathetic reflexes over time and regulated autonomic balance.

Based on the improvement of symptoms and test results, EAT was considered effective for ME/CFS. A literature review was conducted on the mechanism of the therapeutic effect of EAT on ME/CFS.

Source: Hirobumi I. A Case Report of Chronic Epipharyngitis With Chronic Fatigue Treated With Epipharyngeal Abrasive Therapy (EAT). Cureus. 2024 Feb 23;16(2):e54742. doi: 10.7759/cureus.54742. PMID: 38405656; PMCID: PMC10884883. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884883/ (Full text)

Mechanisms underlying exercise intolerance in long COVID: An accumulation of multisystem dysfunction

Abstract:

The pathogenesis of exercise intolerance and persistent fatigue which can follow an infection with the SARS-CoV-2 virus (“long COVID”) is not fully understood. Cases were recruited from a long COVID clinic (N = 32; 44 ± 12 years; 10 (31%) men), and age-/sex-matched healthy controls (HC) (N = 19; 40 ± 13 years; 6 (32%) men) from University College London staff and students.

We assessed exercise performance, lung and cardiac function, vascular health, skeletal muscle oxidative capacity, and autonomic nervous system (ANS) function. Key outcome measures for each physiological system were compared between groups using potential outcome means (95% confidence intervals) adjusted for potential confounders. Long COVID participant outcomes were compared to normative values.

When compared to HC, cases exhibited reduced oxygen uptake efficiency slope (1847 (1679, 2016) vs. 2176 (1978, 2373) mL/min, p = 0.002) and anaerobic threshold (13.2 (12.2, 14.3) vs. 15.6 (14.4, 17.2) mL/kg/min, p < 0.001), and lower oxidative capacity, measured using near infrared spectroscopy (τ: 38.7 (31.9, 45.6) vs. 24.6 (19.1, 30.1) s, p = 0.001). In cases, ANS measures fell below normal limits in 39%.

Long COVID is associated with reduced measures of exercise performance and skeletal muscle oxidative capacity in the absence of evidence of microvascular dysfunction, suggesting mitochondrial pathology. There was evidence of attendant ANS dysregulation in a significant proportion. These multisystem factors might contribute to impaired exercise tolerance in long COVID sufferers.

Source: Jamieson A, Al Saikhan L, Alghamdi L, Hamill Howes L, Purcell H, Hillman T, Heightman M, Treibel T, Orini M, Bell R, Scully M, Hamer M, Chaturvedi N, Montgomery H, Hughes AD, Astin R, Jones S. Mechanisms underlying exercise intolerance in long COVID: An accumulation of multisystem dysfunction. Physiol Rep. 2024 Feb;12(3):e15940. doi: 10.14814/phy2.15940. PMID: 38346773; PMCID: PMC10861355. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861355/ (Full text)

Evaluation of Outpatients in the Post-COVID-19 Period in Terms of Autonomic Dysfunction and Silent Ischemia

Abstract:

Introduction and objective: In this context, the objective of this study is to evaluate the 24-hour ambulatory electrocardiography (ECG) recordings, autonomous function with heart rate variability (HRV), and silent ischemia (SI) attacks with ST depression burden (SDB) and ST depression time (SDT) of post-COVID-19 patients. Materials and methods: The 24-hour ambulatory ECG recordings obtained >12 weeks after the diagnosis of COVID-19 were compared between 55 consecutive asymptomatic and 73 symptomatic post-COVID-19 patients who applied to the cardiology outpatient clinic with complaints of palpitation and chest pain in comparison with asymptomatic post-COVID-19 patients in Kars Harakani state hospital. SDB, SDT, and HRV parameters were analyzed. Patients who had been on medication that might affect HRV, had comorbidities that might have caused coronary ischemia, and were hospitalized with severe COVID-19 were excluded from the study.

Results: There was no significant difference between symptomatic and asymptomatic post-COVID-19 patients in autonomic function. On the other hand, SDB and SDT parameters were significantly higher in symptomatic post-COVID-19 patients than in asymptomatic post-COVID-19 patients. Multivariate analysis indicated that creatine kinase-myoglobin binding (CK-MB) (OR:1.382, 95% CI:1.043-1.831; p=0.024) and HRV index (OR: 1.033, 95% CI:1.005-1.061; p=0.019) were found as independent predictors of palpitation and chest pain symptoms in post-COVID-19 patients.

Conclusion: The findings of this study revealed that parasympathetic overtone and increased HRV were significantly higher in symptomatic patients with a history of COVID-19 compared to asymptomatic patients with a history of COVID-19 in the post-COVID-19 period. Additionally, 24-hour ambulatory ECG recordings and ST depression analysis data indicated that patients who experienced chest pain in the post-COVID-19 period experienced silent ischemia (SI) attacks.

Source: Karakayalı M, Artac I, Ilis D, Omar T, Rencuzogullari I, Karabag Y, Altunova M, Arslan A, Guzel E. Evaluation of Outpatients in the Post-COVID-19 Period in Terms of Autonomic Dysfunction and Silent Ischemia. Cureus. 2023 Jun 11;15(6):e40256. doi: 10.7759/cureus.40256. PMID: 37440812; PMCID: PMC10335598. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10335598/ (Full text)

Not myopathic, but autonomic changes in patients with long-COVID syndrome: a case series

Abstract:

Introduction: Neurological sequelae following SARS-CoV-2 infection still represent a serious concern both for neurologists and neuroscientists. In our paper, we investigated pain, myalgia, and fatigue as symptoms in long-COVID patients with an electrophysiological approach, comprising the evaluation of sympathetic skin responses (SSRs) and quantitative electromyography (qEMG).

Materials and methods: Twelve patients were enrolled (mean age, 47.7 ± 11.6 years), referred to our attention because of myalgia, pain, or muscle cramps, which persisted about 6 months after the diagnosis of SARS-CoV-2 infection. They underwent conventional electroneurography (ENG), needle electromyography (EMG), and SSRs; moreover, qEMG was performed by sampling at least 20 motor unit potentials (20-30 MUPs) during weak voluntary contraction in deltoid and tibialis anterior muscles. The mean duration, amplitude, and percentage of polyphasic potentials were assessed and compared with healthy and age-matched volunteers.

Results: ENG did not disclose significant changes compared to healthy subjects; needle EMG did not reveal denervation activity. In addition, qEMG showed MUPs similar to those recorded in healthy volunteers in terms of polyphasia (deltoid: p = 0.24; TA: p = 0.35), MUP area (deltoid: p = 0.45; TA: p = 0.44), mean duration (deltoid: p = 0.06; TA: p = 0.45), and amplitude (deltoid: p = 0.27; TA: p = 0.63). SSRs were not recordable from lower limbs in seven patients (58%) and from the upper ones in three of them (25%).

Conclusion: Our data suggest an involvement of the autonomic system, with a focus on cholinergic efferent sympathetic activity, without any evidence of myopathic changes.

Source: Bocci T, Bertini A, Campiglio L, Botta S, Libelli G, Guidetti M, Priori A. Not myopathic, but autonomic changes in patients with long-COVID syndrome: a case series. Neurol Sci. 2023 Apr;44(4):1147-1153. doi: 10.1007/s10072-023-06637-8. Epub 2023 Feb 3. PMID: 36735149; PMCID: PMC9896447. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896447/ (Full study)

Autoimmunity in Long Covid and POTS

Abstract:

Orthostatic intolerance and other autonomic dysfunction syndromes are emerging as distinct symptom clusters in Long Covid. Often accompanying these are common, multi-system constitutional features such as fatigue, malaise and skin rashes which can signify generalised immune dysregulation. At the same time, multiple autoantibodies are identified in both Covid-related autonomic disorders and non-Covid autonomic disorders, implying a possible underlying autoimmune pathology. The lack of specificity of these findings precludes direct interpretations of cause and association, but prevalence with its supporting evidence is compelling.

In this review, we discuss the role of the autonomic nervous and immune systems in Covid and Long Covid and their potential influence on symptoms and clinical practice. Additionally, overlap with non-Covid autonomic dysfunction is considered. Understanding these new disorders can inform both neuro-immunology and Long Covid management.

Source: Fatema-Zahra El-Rhermoul, Artur Fedorowski, Philip Eardley, Patricia Taraborrelli, Dimitrios Panagopoulos, Richard Sutton, Phang Boon Lim, Melanie Dani, Autoimmunity in Long Covid and POTS, Oxford Open Immunology, 2023;, iqad002, https://doi.org/10.1093/oxfimm/iqad002 (Full text available as PDF file)

Cardiac Autonomic Function in Long COVID-19 Using Heart Rate Variability: An Observational Cross-Sectional Study

Abstract:

Background: Heart rate variability is a non-invasive, measurable, and established autonomic nervous system test. Long-term COVID-19 sequelae are unclear; however, acute symptoms have been studied.

Objectives: To determine autonomic cardiac differences between long COVID-19 patients and healthy controls and evaluate associations among symptoms, comorbidities, and laboratory findings.

Methods: This single-center study included long COVID-19 patients and healthy controls. The heart rate variability (HRV), a quantitative marker of autonomic activity, was monitored for 24 h using an ambulatory electrocardiogram system. HRV indices were compared between case and control groups. Symptom frequency and inflammatory markers were evaluated. A significant statistical level of 5% (p-value 0.05) was adopted.

Results: A total of 47 long COVID-19 patients were compared to 42 healthy controls. Patients averaged 43.8 (SD14.8) years old, and 60.3% were female. In total, 52.5% of patients had moderate illness. Post-exercise dyspnea was most common (71.6%), and 53.2% lacked comorbidities. CNP, D-dimer, and CRP levels were elevated (p-values of 0.0098, 0.0023, and 0.0015, respectively). The control group had greater SDNN24 and SDANNI (OR = 0.98 (0.97 to 0.99; p = 0.01)). Increased low-frequency (LF) indices in COVID-19 patients (OR = 1.002 (1.0001 to 1.004; p = 0.030)) and high-frequency (HF) indices in the control group (OR = 0.987 (0.98 to 0.995; p = 0.001)) were also associated.

Conclusions: Patients with long COVID-19 had lower HF values than healthy individuals. These variations are associated with increased parasympathetic activity, which may be related to long COVID-19 symptoms and inflammatory laboratory findings.

Source: Menezes Junior ADS, Schröder AA, Botelho SM, Resende AL. Cardiac Autonomic Function in Long COVID-19 Using Heart Rate Variability: An Observational Cross-Sectional Study. J Clin Med. 2022 Dec 22;12(1):100. doi: 10.3390/jcm12010100. PMID: 36614901; PMCID: PMC9821736. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821736/ (Full text)

Stellate Ganglion Block for Long COVID Symptom Management: A Case Report

Abstract:

Stellate ganglion block (SGB) is gaining increasing acceptance as a treatment modality for various medical conditions. It works by blocking neuronal transmissions which in turn alleviates sympathetically-driven disease processes. Many of the prolonged sequelae of long COVID are thought to be mediated by dysregulation of the autonomic nervous system, and SGB is being investigated as a potential option for symptomatic management of long COVID. This case report demonstrates the efficacy of SGB in a previously healthy patient for the management of long COVID symptoms including fatigue, post-exertional malaise, shortness of breath, and gastrointestinal symptoms.

Source: Khan M H, Kirkpatrick K P, Deng Y, et al. (December 07, 2022) Stellate Ganglion Block for Long COVID Symptom Management: A Case Report. Cureus 14(12): e32295. doi:10.7759/cureus.32295 https://www.cureus.com/articles/127985-stellate-ganglion-block-for-long-covid-symptom-management-a-case-report (Full text)