Autoantibody targeting therapies in post COVID syndrome and myalgic encephalomyelitis/chronic fatigue syndrome

Introduction:

Following the shift of SARS-CoV-2 from pandemic to endemic, post COVID syndrome (PCS) joins the list of already known post-acute infection syndromes (PAIS) and its most severe manifestation, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The exact pathomechanism of PCS has not yet been fully understood. Immune dysregulation with persistent inflammation, microvascular injury with endothelial dysfunction, autonomic nervous system dysfunction, mitochondrial dysfunction, gut microbiome dysbiosis and persistence of SARS-CoV-2 virus or SARS-CoV-2 viral particles have been proposed [1].

Autoimmunity could be a linking element across various mechanisms and there is indeed mounting evidence that autoantibodies (AAbs) in particular play a role in a subset of PCS and ME/CFS. In ME/CFS there are now numerous studies showing elevated levels and altered functions of G-protein coupled receptor autoantibodies (GPCR AAbs) and their correlation with severity of key symptoms [2]. First trials with AAb-targeting therapies show promising though mixed results. These include studies directly targeting AAbs by removal with immunoadsorption or their enhanced degradation with efgartigimod or neutralization with BC007 (rovunaptabin). Further B cell depletion with rituximab or plasma cell depletion with daratumumab has yielded some positive but inconsistent results.

Source: Wohlrab F, Eltity M, Ufer F, Paul F, Scheibenbogen C, Bellmann-Strobl J. Autoantibody targeting therapies in post COVID syndrome and myalgic encephalomyelitis/chronic fatigue syndrome. Expert Opin Biol Ther. 2025 Apr 10. doi: 10.1080/14712598.2025.2492774. Epub ahead of print. PMID: 40211686. https://www.tandfonline.com/doi/full/10.1080/14712598.2025.2492774#d1e211 (Full text)

Prevalence of EBV, HHV6, HCMV, HAdV, SARS-CoV-2, and Autoantibodies to Type I Interferon in Sputum from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients

Abstract:

An exhausted antiviral immune response is observed in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and post-SARS-CoV-2 syndrome, also termed long COVID. In this study, potential mechanisms behind this exhaustion were investigated.

First, the viral load of Epstein-Barr virus (EBV), human adenovirus (HAdV), human cytomegalovirus (HCMV), human herpesvirus 6 (HHV6), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was determined in sputum samples (n = 29) derived from ME/CFS patients (n = 13), healthy controls (n = 10), elderly healthy controls (n = 4), and immunosuppressed controls (n = 2). Secondly, autoantibodies (autoAbs) to type I interferon (IFN-I) in sputum were analyzed to possibly explain impaired viral immunity.

We found that ME/CFS patients released EBV at a significantly higher level compared to controls (p = 0.0256). HHV6 was present in ~50% of all participants at the same level. HAdV was detected in two cases with immunosuppression and severe ME/CFS, respectively. HCMV and SARS-CoV-2 were found only in immunosuppressed controls. Notably, anti-IFN-I autoAbs in ME/CFS and controls did not differ, except in a severe ME/CFS case showing an increased level.

We conclude that ME/CFS patients, compared to controls, have a significantly higher load of EBV. IFN-I autoAbs cannot explain IFN-I dysfunction, with the possible exception of severe cases, also reported in severe SARS-CoV-2. We forward that additional mechanisms, such as the viral evasion of IFN-I effect via the degradation of IFN-receptors, may be present in ME/CFS, which demands further studies.

Source: Hannestad U, Allard A, Nilsson K, Rosén A. Prevalence of EBV, HHV6, HCMV, HAdV, SARS-CoV-2, and Autoantibodies to Type I Interferon in Sputum from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Viruses. 2025 Mar 14;17(3):422. doi: 10.3390/v17030422. PMID: 40143349; PMCID: PMC11946815. https://pmc.ncbi.nlm.nih.gov/articles/PMC11946815/ (Full text)

An In-Depth Exploration of the Autoantibody Immune Profile in ME/CFS Using Novel Antigen Profiling Techniques

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disorder characterized by serious physical and cognitive impairments. Recent research underscores the role of immune dysfunction, including the role of autoantibodies, in ME/CFS pathophysiology.

Expanding on previous studies, we analyzed 7542 antibody-antigen interactions in ME/CFS patients using two advanced platforms: a 1134 autoantibody Luminex panel from Oncimmune and Augmenta Bioworks, along with Rapid Extracellular Antigen Profiling (REAP), a validated high-throughput method that measures autoantibody reactivity against 6183 extracellular human proteins and 225 human viral pathogen proteins.

Unlike earlier reports, our analysis of 172 participants revealed no significant differences in autoantibody reactivities between ME/CFS patients and controls, including against GPCRs such as β-adrenergic receptors. However, subtle trends in autoantibody ratios between male and female ME/CFS subgroups, along with patterns of herpesvirus reactivation, suggest the need for broader and more detailed exploration.

Source: Germain A, Jaycox JR, Emig CJ, Ring AM, Hanson MR. An In-Depth Exploration of the Autoantibody Immune Profile in ME/CFS Using Novel Antigen Profiling Techniques. Int J Mol Sci. 2025 Mar 20;26(6):2799. doi: 10.3390/ijms26062799. PMID: 40141440; PMCID: PMC11943395. https://pmc.ncbi.nlm.nih.gov/articles/PMC11943395/ (Full text)

Autoantibody-Driven Monocyte Dysfunction in Post-COVID Syndrome with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Post-COVID syndrome (PCS) has emerged as a significant health concern with persisting symptoms. A subset of PCS patients develops severe myalgic encephalomyelitis/chronic fatigue syndrome (pcME/CFS). Dysregulated autoantibodies (AABs) have been implicated in PCS, contributing to immune dysregulation, impairment of autonomous nerve and vascular function. As recently shown in autoimmune diseases, IgG fractions translate disease-specific pathways into various cells. Therefore, we asked whether IgG fractions from PCS patients could be applied in vitro to identify specific cytokine rersponses for PCS patients without (nPCS) and with pcME/CSF.

To assess this, we have stimulated monocyte cell lines with IgG fractions from PCS patients. Our findings reveal distinct patterns of immune regulation by AABs in vascular and immune dysfunction. In contrast to nPCS, pcME/CSF AABs induced enhanced neurotrophic responses, characterized by significant cytokine correlations involving brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF) and LIGHT. AAB-induced cytokine levels correlate with clinical symptoms. Further, this study emphasizes a contribution of AAB in PCS, in mitigating long-term immune dysregulation, and a need for therapies modulating IgG-induced pathways.

Source: Alexander HackelFranziska SotznyElise MennengaHarald HeideckeKai Schulze-FosterKontantinos FourlakisSusanne LuedersHanna GrasshoffKerstin RubarthFrank KonietschkeTanja LangeCarmen ScheibenbogenReza Akbarzade, Gabriela Riemekasten. Autoantibody-Driven Monocyte Dysfunction in Post-COVID Syndrome with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.

Effect of Immunoadsorption on clinical presentation and immune alterations in COVID-19-induced and/or aggravated ME/CFS

Abstract:

Autoreactive antibodies (AAB) are currently being investigated as causative or aggravating factors during post-COVID. In this study we analyze the effect of immunoadsorption therapy on symptom improvement and the relationship with immunological parameters in post-COVID patients exhibiting symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) induced or aggravated by an SARS-CoV-2 infection. This observational study includes 12 post-COVID patients exhibiting a predominance of ME/CFS symptoms alongside increased concentrations of autonomic nervous system receptors (ANSR) autoantibodies and neurological impairments.

We found that following immunoadsorption therapy, the ANSR autoantibodies were nearly eliminated from the patients’ blood. The removal of IgG antibodies was accompanied by a decrease of pro-inflammatory cytokines including IL4, IL2, IL1β, TNF and IL17A serum levels, and a significant reduction of soluble spike protein. Notably, a strong positive correlation between pro-inflammatory cytokines and ASNR-AABs β1, β2, M3, and M4 was observed in spike protein-positive patients, whereas no such correlation was evident in spike protein-negative patients.

30 days post-immunoadsorption therapy, patients exhibited notable improvement in neuropsychological function and a modest but statistically significant amelioration of hand grip strength was observed. However, neither self-reported symptoms nor scores on ME/CFS questionnaires showed a significant improvement and a rebound of the removed proteins occurring within a month.

Source: Anft M, Wiemers L, Rosiewicz KS, Doevelaar A, Skrzypczyk S, Kurek J, Kaliszczyk S, Seidel M, Stervbo U, Seibert FS, Westhoff TH, Babel N. Effect of Immunoadsorption on clinical presentation and immune alterations in COVID-19-induced and/or aggravated ME/CFS. Mol Ther. 2025 Jan 9:S1525-0016(25)00011-5. doi: 10.1016/j.ymthe.2025.01.007. Epub ahead of print. PMID: 39797400. https://www.cell.com/molecular-therapy-family/molecular-therapy/pdf/S1525-0016(25)00011-5.pdf (Full text) https://pubmed.ncbi.nlm.nih.gov/39797400/ (Abstract)

Transfer of IgG from Long COVID patients induces symptomology in mice

Abstract:

SARS-CoV-2 infections worldwide led to a surge in cases of Long COVID, a post-infectious syndrome. It has been hypothesized that autoantibodies play a crucial role in the development of Long COVID and other syndromes, such as fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In this study, we tested this hypothesis by passively transferring total IgG from Long COVID patients to mice.

Using Glial Fibrillary Acidic Protein (GFAP) and type-I interferon expression, we stratified patients into three Long COVID subgroups, each with unique plasma proteome signatures. Remarkably, IgG transfer from the two subgroups, which are characterized by higher plasma levels of neuronal proteins and leukocyte activation markers, induced pronounced and persistent sensory hypersensitivity with distinct kinetics. Conversely, IgG transfer from the third subgroup, which are characterized by enriched skeletal and cardiac muscle proteome profiles, reduced locomotor activity in mice without affecting their motor coordination.

These findings demonstrate that transfer of IgG from Long COVID patients to mice replicates disease symptoms, underscoring IgG’s causative role in Long COVID pathogenesis. This work proposes a murine model that mirrors Long COVID’s pathophysiological mechanisms, which may be used as a tool for screening and developing targeted therapeutics.

Source: Hung-Jen Chen, Brent Appelman, Hanneke Willemen, Amelie Bos, Judith Prado, Chiara. E. Geyer, Patrícia Silva Santos Ribeiro, Sabine Versteeg, Mads Larsen, Eline Schüchner, Marije K. Bomers, Ayesha H.A. Lavell, Amsterdam UMC COVID-19 biobank, Braeden Charlton, Rob Wüst, W. Joost Wiersinga, Michèle van Vugt, Gestur Vidarsson, Niels Eijkelkamp, Jeroen den Dunnen. Transfer of IgG from Long COVID patients induces symptomology in mice.

Diverse immunological dysregulation, chronic inflammation, and impaired erythropoiesis in long COVID patients with chronic fatigue syndrome

Abstract:

A substantial number of patients recovering from acute SARS-CoV-2 infection present serious lingering symptoms, often referred to as long COVID (LC). However, a subset of these patients exhibits the most debilitating symptoms characterized by ongoing myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS).

We specifically identified and studied ME/CFS patients from two independent LC cohorts, at least 12 months post the onset of acute disease, and compared them to the recovered group (R). ME/CFS patients had relatively increased neutrophils and monocytes but reduced lymphocytes. Selective T cell exhaustion with reduced naïve but increased terminal effector T cells was observed in these patients. LC was associated with elevated levels of plasma pro-inflammatory cytokines, chemokines, Galectin-9 (Gal-9), and artemin (ARTN). A defined threshold of Gal-9 and ARTN concentrations had a strong association with LC.

The expansion of immunosuppressive CD71+ erythroid cells (CECs) was noted. These cells may modulate the immune response and contribute to increased ARTN concentration, which correlated with pain and cognitive impairment. Serology revealed an elevation in a variety of autoantibodies in LC. Intriguingly, we found that the frequency of 2B4+CD160+ and TIM3+CD160+ CD8+ T cells completely separated LC patients from the R group.

Our further analyses using a multiple regression model revealed that the elevated frequency/levels of CD4 terminal effector, ARTN, CEC, Gal-9, CD8 terminal effector, and MCP1 but lower frequency/levels of TGF-β and MAIT cells can distinguish LC from the R group. Our findings provide a new paradigm in the pathogenesis of ME/CFS to identify strategies for its prevention and treatment.

Source: Saito S, Shahbaz S, Osman M, Redmond D, Bozorgmehr N, Rosychuk RJ, Lam G, Sligl W, Cohen Tervaert JW, Elahi S. Diverse immunological dysregulation, chronic inflammation, and impaired erythropoiesis in long COVID patients with chronic fatigue syndrome. J Autoimmun. 2024 May 25;147:103267. doi: 10.1016/j.jaut.2024.103267. Epub ahead of print. PMID: 38797051. https://www.sciencedirect.com/science/article/pii/S089684112400101X (Full text)

Early immune factors associated with the development of post-acute sequelae of SARS-CoV-2 infection in hospitalized and non-hospitalized individuals

Abstract:

Background: Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to post-acute sequelae of SARS-CoV-2 (PASC) that can persist for weeks to years following initial viral infection. Clinical manifestations of PASC are heterogeneous and often involve multiple organs. While many hypotheses have been made on the mechanisms of PASC and its associated symptoms, the acute biological drivers of PASC are still unknown.

Methods: We enrolled 494 patients with COVID-19 at their initial presentation to a hospital or clinic and followed them longitudinally to determine their development of PASC. From 341 patients, we conducted multi-omic profiling on peripheral blood samples collected shortly after study enrollment to investigate early immune signatures associated with the development of PASC.

Results: During the first week of COVID-19, we observed a large number of differences in the immune profile of individuals who were hospitalized for COVID-19 compared to those individuals with COVID-19 who were not hospitalized. Differences between individuals who did or did not later develop PASC were, in comparison, more limited, but included significant differences in autoantibodies and in epigenetic and transcriptional signatures in double-negative 1 B cells, in particular.

Conclusions: We found that early immune indicators of incident PASC were nuanced, with significant molecular signals manifesting predominantly in double-negative B cells, compared with the robust differences associated with hospitalization during acute COVID-19. The emerging acute differences in B cell phenotypes, especially in double-negative 1 B cells, in PASC patients highlight a potentially important role of these cells in the development of PASC.

Source: Leung JM, Wu MJ, Kheradpour P, Chen C, Drake KA, Tong G, Ridaura VK, Zisser HC, Conrad WA, Hudson N, Allen J, Welberry C, Parsy-Kowalska C, Macdonald I, Tapson VF, Moy JN, deFilippi CR, Rosas IO, Basit M, Krishnan JA, Parthasarathy S, Prabhakar BS, Salvatore M, Kim CC. Early immune factors associated with the development of post-acute sequelae of SARS-CoV-2 infection in hospitalized and non-hospitalized individuals. Front Immunol. 2024 Jan 22;15:1348041. doi: 10.3389/fimmu.2024.1348041. PMID: 38318183; PMCID: PMC10838987. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838987/ (Full text)

Role of pharmacological activity of autoantibodies in ME/CFS

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a condition characterised by extreme fatigue, memory impairment, pain and other symptoms that vary from patient to patient. It affects about 0.9% of the population and is often triggered by an acute viral or bacterial infection, such as Epstein-Barr virus. The underlying physiological and molecular basis of ME/CFS is unknown, and no effective treatments exist.

One proposed mechanism is that the blood flow is altered by autoantibodies against receptors involved in blood flow regulation. Antibodies are generated by the immune system to recognise intruders and under normal conditions, our immune system is trained not to attack our own tissues. However, during a severe infection, the immune system adopts an “all hands on deck” approach, which results in some of the newly-produced antibodies escaping quality control and targeting our own tissues, autoantibodies. Receptors regulation blood flow are located in walls of blood vessels and cause a blood vessel to dilate or contract as the demand for oxygen and nutrients to tissues such as the brain or muscles changes. Research has found increased levels of these autoantibodies in ME/CFS patients and initial trials removing these autoantibodies from the blood using a technique called immunoadsorption have shown improvement in symptoms.

In this project, we will test the hypothesis that autoantibodies can activate or inhibit the receptors responsible for the blood flow regulation, in a similar way medical drugs are used to regulate blood pressure.
We aim to profile serum samples from 325 ME/CFS patients and 130 healthy individuals to determine the presence of autoantibodies against all thirty receptors involved in blood pressure regulation. Importantly, we will study the ability of autoantibodies detected in each sample to activate or inhibit these receptors in order to test the hypothesis that the activity of these autoantibodies is a decisive factor in the disease.
If our hypothesis is correct, we will be able to develop an accurate blood test that may be able to detect ME/CFS earlier or to independently confirm the diagnosis. Ultimately, we hope that these results may also indicate a possible route for therapeutic intervention to counteract the effects of autoantibodies and alleviate the ME/CFS symptoms using a combination of already existing drugs, specific for each individual case.

 

Technical Summary:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a condition of extreme tiredness and brain fog, often triggered by an acute infection. Its prevalence is ca 0.9% and here is no effective treatment. Competing theories for the root cause of ME/CFS include metabolic or redox homeostasis disruption, and presence of autoantibodies (AABs) against G protein coupled receptors (GPCRs) involved in regulation of blood flow.
Triggered by acute infection, autoimmunity is a result of reduced immuno-vigilance during severe infections, when an “all hands on deck” approach confers survival advantage. About 30% of ME/CFS patients show increased titre of autoantibodies against beta2-adrenoceptor and M3/4 muscarinic receptors controlling vasodilation/vasoconstriction, but this could become higher if all 30 receptors controlling blood flow would be taken into account.
In this project, we will test a hypothesis that the pharmacological activity of AABs against GPCRs is the key to their involvement in ME/CFS. Similar to medical drugs, AABs can be stimulatory (agonistic) or inhibitory (antagonistic) and induce a therapeutic or an undesired side effect.
We will profile 325 patient samples and 130 control plasma samples for AABs and their pharmacological activity using a state-of-the art GPCR drug screening pipeline we have established, against all 30 GPCRs involved in blood pressure regulation. We also have machine learning expertise that would allow us to interpret this extensive dataset, extract the most salient features. This will advance the understanding of the molecular basis of ME/CFS and could form the basis of a robust diagnostic blood test for ME/CFS. Ultimately, our findings may point in the direction of developing combination therapy using repurposed drugs to counteract the effects of autoantibodies and mitigate ME/CFS symptoms and stimulate the development of specific B-cell elimination strategy to cure ME/CFS.
Source: Lead Research Organisation: University of Nottingham, Department Name: School of Life Sciences. https://gtr.ukri.org/projects?ref=MR%2FY003667%2F1&pn=0&fetchSize=25&selectedSortableField=date&selectedSortOrder=ASC

Characterization of subgroups of myalgic encephalomyelitis/chronic fatigue syndrome based on disease onset, symptoms and biomarkers

Abstract:

Myalgic encephalomyelitis, also called chronic fatigue syndrome (ME/CFS), is an acquired multisystem disease. The core symptoms include fatigue, exercise intolerance and pain as well as cognitive, autonomic and immunological manifestations. The diagnosis of ME/CFS is based on clinical criteria. Specific biomarkers do not currently exist, but studies suggest a role for soluble cluster of differentiation 26 (sCD26) and autoantibodies (AAK) against G protein-coupled receptors (GPCR). In many cases, the disease begins as a result of infections. 

The aim of this work was to determine the pathophysiological significance of potential biomarkers, assuming different development mechanisms in patients with infection-associated disease onset compared to those with other triggers. In a first study, sCD26, also called dipeptidyl peptidase-4 (DPP-4) due to its enzymatic activity, was analyzed and compared in the serum of 205 ME/CFS patients and 98 controls. This was followed by a comprehensive correlation analysis between sCD26 and clinical and laboratory parameters for ME/CFS patients, separated by type of disease onset. In addition, CD26 expression on lymphocyte subpopulations was determined for 12 patients and 12 controls. 

In another study, a correlation analysis was carried out between AAK against vasoregulatory GPCR and symptoms in 116 ME/CFS patients, separated by type of disease onset. It was shown that in ME/CFS patients with infection-associated disease onset, sCD26 correlated with numerous immunological and metabolic parameters, the changes of which have also been described in connection with DPP-4 inhibitors. In addition, there were inverse correlations with AAK against alpha1-adrenergic and M3-acetylcholine receptors. 

In this subgroup, the second study found correlations between numerous GPCR-AAK and the severity of fatigue, muscle pain and cognitive symptoms as well as greater functional impairment relevant to everyday life. None of these correlations were found in patients without infection-associated disease onset. 

Here, sCD26 correlated inversely with orthostatically induced heart rate increases and AAK against alpha- and beta-adrenergic receptors with the severity of orthostatic symptoms. Different correlation patterns between AAK against GPCR and symptoms allow us to assume that in patients with ME/CFS, an altered function of the AAK or its receptors or signaling pathways has occurred as a result of an infection. The association of sCD26 and GPCR-AAK also indicates the dysregulation of other parts of the immune system with potentially pathological consequences. The differences presented compared to patients with non-infectious genesis suggest two definable subgroups.

Source: Szklarski, Marvin. Characterization of subgroups of myalgic encephalomyelitis/chronic fatigue syndrome based on disease onset, symptoms and biomarkers. Charité – University Medicine Berlin, dissertation. https://refubium.fu-berlin.de/handle/fub188/40276