Case Report: Rapid and partially persistent, improvements of anorexia nervosa and probable myalgic encephalo-myelitis/chronic fatigue syndrome upon metreleptin treatment during two dosing episodes

Abstract

A comorbidity of anorexia nervosa (AN) and myalgic encephalomyelitis (ME/CSF) is uncommon. A 17-year-old male adolescent with possible onset of ME/CFS after an Epstein Barr Virus infection (EBV) and later onset of AN during a second period of weight loss was twice treated off-label with metreleptin for 15 and 11 days, respectively.

As in previous cases, eating disorder specific cognitions and mood improved. Interestingly, fatigue and post-exertional muscle pain (P-EMP) improved, too. We discuss potential mechanisms. Treatment with metreleptin may prove beneficial in AN and in ME/CSF associated with substantial weight loss.

Source: Jochen Antel, Johannes Hebebrand, Linda Von Piechowski, Cordula Kiewert, Burkhard Stüve, Gertraud Gradl-Dietsch. Rapid and partially persistent, improvements of anorexia nervosa and probable myalgic encephalo-myelitis/chronic fatigue syndrome upon metreleptin treatment during two dosing episodes. Front. Psychiatry, Sec. Adolescent and Young Adult Psychiatry, Volume 14 – 2023. https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1267495/abstract

Bioimpedance spectroscopy characterization of Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS) peripheral blood mononuclear cells

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a disabling and chronic disease, importantly related to the current COVID-19 pandemic. Currently, there are no specific laboratory tests to directly diagnose ME/CFS. In this work, the use of impedance spectroscopy is studied as a potential technique for the diagnosis of ME/CFS. A specific device for the electrical characterization of peripheral blood mononuclear cells was designed and implemented.

Impedance spectroscopy measurements in the range from 1 Hz to 500 MHz were carried out after the osmotic stress of the samples with sodium chloride solution at 1M concentration. The evolution in time after the osmotic stress at two specific frequencies (1.36 kHz and 154 kHz) was analyzed.

The device showed its sensitivity to the presence of cells and the evolution of the osmotic processes. Higher values of impedance (around 15% for both the real and imaginary part) were measured at 1.36 kHz in ME/CFS patients compared to control samples. No significant difference was found between patient samples and control samples at 154 kHz. Results help to further understand the diagnosis of ME/CFS patients and the relation of their blood samples with bioimpedance measurements.

Source: Sara Martinez Rodriguez, Alberto Olmo Fernandez, Daniel Martin Fernandez, Isabel Martin-Garrido. Bioimpedance spectroscopy characterization of Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS) peripheral blood mononuclear cells. Biomedical Letters, Volume 9, Issue 2: 121-128. http://thesciencepublishers.com/biomed_lett/v9i2abstract6.html (Full text available as PDF file)

Interdisciplinary multimodal pain therapy in postviral syndromes and ME/CFS : Features, pitfalls and model concept

Abstract:

Background: Multimodal pain therapy usually take place in the context of group therapy lasting several weeks and is based on a generally activating approach. Due to the specificity of stress intolerance with postexertional malaise (PEM) in patients with postviral syndromes, physical as well as psychological overload must be urgently avoided in these cases; however, these aspects can only be insufficiently considered in current medical pain therapy concepts.

Methods: Summary of the current literature and presentation of clinical characteristics as well as presentation of a model project for a multimodal pain therapy in postviral syndromes with PEM.

Model concept: The presented model project describes a day clinic treatment setting for interdisciplinary multimodal pain therapy adapted to the individual resilience with minimization of the risk of strain-induced deterioration of the condition.

Source: Luchting B, Behrends U, Eigner B, Stojanov S, Warlitz C, Haegele M, Neuwirth E, Mihatsch L, Richter HP. Interdisziplinäre multimodale Schmerztherapie bei postviralen Syndromen und ME/CFS : Besonderheiten, Fallstricke und Modellkonzept [Interdisciplinary multimodal pain therapy in postviral syndromes and ME/CFS : Features, pitfalls and model concept]. Schmerz. 2023 Oct 20. German. doi: 10.1007/s00482-023-00761-2. Epub ahead of print. PMID: 37 https://pubmed.ncbi.nlm.nih.gov/37864020/864020.

Genomic communication via circulating extracellular vesicles and long-term health consequences of COVID-19

Abstract:

COVID-19 continues to affect an unprecedented number of people with the emergence of new variants posing a serious challenge to global health. There is an expansion of knowledge in understanding the pathogenesis of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the impact of the acute disease on multiple organs. In addition, growing evidence reports that the impact of COVID-19 on different organs persists long after the recovery phase of the disease, leading to long-term consequences of COVID-19.

These long-term consequences involve pulmonary as well as extra-pulmonary sequelae of the disease. Noteably, recent research has shown a potential association between COVID-19 and change in the molecular cargo of extracellular vesicles (EVs). EVs are vesicles released by cells and play an important role in cell communication by transfer of bioactive molecules between cells. Emerging evidence shows a strong link between EVs and their molecular cargo, and regulation of metabolism in health and disease.

This review focuses on current knowledge about EVs and their potential role in COVID-19 pathogenesis, their current and future implications as tools for biomarker and therapeutic development and their possible effects on long-term impact of COVID-19.

Source: Nair, S., Nova-Lamperti, E., Labarca, G. et al. Genomic communication via circulating extracellular vesicles and long-term health consequences of COVID-19. J Transl Med 21, 709 (2023). https://doi.org/10.1186/s12967-023-04552-2 https://link.springer.com/article/10.1186/s12967-023-04552-2 (Full text)

 

Role of Microglia, Decreased Neurogenesis and Oligodendrocyte Depletion in Long COVID-Mediated Brain Impairments

Abstract:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a recent worldwide coronavirus disease-2019 (COVID-19) pandemic. SARS-CoV-2 primarily causes an acute respiratory infection but can progress into significant neurological complications in some. Moreover, patients with severe acute COVID-19 could develop debilitating long-term sequela.

Long-COVID is characterized by chronic symptoms that persist months after the initial infection. Common complaints are fatigue, myalgias, depression, anxiety, and “brain fog,” or cognitive and memory impairments. A recent study demonstrated that a mild COVID-19 respiratory infection could generate elevated proinflammatory cytokines and chemokines in the cerebral spinal fluid.

This commentary discusses findings from this study, demonstrating that even a mild respiratory SARS-CoV-2 infection can cause considerable neuroinflammation with microglial and macrophage reactivity. Such changes could also be gleaned by measuring chemokines and cytokines in the circulating blood. Moreover, neuroinflammation caused by mild SARS-CoV-2 infection can also impair hippocampal neurogenesis, deplete oligodendrocytes, and decrease myelinated axons.

All these changes likely contribute to cognitive deficits in long-COVID syndrome. Therefore, strategies capable of restraining neuroinflammation, maintaining better hippocampal neurogenesis, and preserving oligodendrocyte lineage differentiation and maturation may prevent or reduce the incidence of long-COVID after SARS-CoV-2 respiratory infection.

Source: Wei ZD, Liang K, Shetty AK. Role of Microglia, Decreased Neurogenesis and Oligodendrocyte Depletion in Long COVID-Mediated Brain Impairments. Aging Dis. 2023 Sep 24. doi: 10.14336/AD.2023.10918. Epub ahead of print. PMID: 37815903. https://www.aginganddisease.org/EN/10.14336/AD.2023.10918 (Full text)

Acupuncture as an Additional Method of Rehabilitation Post-COVID-19: a randomized controlled trial

Abstract:

Objectives: The purpose of this study was to evaluate the effectiveness of complex rehabilitation with and without acupuncture in a hospital setting.

Methods: A randomized clinical trial was performed at Rehabilitation center “Kamenskoe Plato” in Almaty, Kazakhstan. 160 patients with Post COVID-19 condition were randomly equally divided into an acupuncture with complex rehabilitation methods and a only complex rehabilitation methods group in the period from March 1, 2022 to July 1, 2022. Either groups was performed for an 10-14 days period. The outcome measures were the Bartel index, the Borg scale, Modified Dyspnea Scale and the 6-minute walking test. Adverse events also were monitored and documented.

Results: We found statistically significant improvement after the rehabilitation course with acupuncture in the all scales. And in the group without acupuncture, only on two scales MDS and Borg scale.

Conclusion: Rehabilitation with acupuncture is possible and effective in patients recovering from post-COVID-19. Our findings may be useful to guide clinicians taking care of patients with post-COVID-19.

Source: Omarova I, Akanova A, Kurmanova A, Kurmanova G, Glushkova N, Seidanova A, Turysbekov K. Acupuncture as an Additional Method of Rehabilitation Post-COVID-19: a randomized controlled trial. J Pharmacopuncture. 2023 Sep 30;26(3):238-246. doi: 10.3831/KPI.2023.26.3.238. PMID: 37799621; PMCID: PMC10547817. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547817/ (Full text)

From ‘mental fog’ to post-acute COVID-19 syndrome’s executive function alteration: Implications for clinical approach

Abstract:

A common symptom of the neuropsychiatric Post-Acute COVID-19 syndrome (neuro-PACS) is the so called ‘brain fog’. Patients describe the brain fog as problems with attention, memory and mental fatigue. Brain fog is experienced by 9-55% of people for months after having contracted SARS-CoV-2 virus. Several theories have been proposed to explain PACS’s brain fog, including a neuroinflammatory hypothesis, but the hypothesis remains to be proven. Here, we examined inflammatory and immunological blood profile in a cohort of patients with PACS to investigate the association between executive functions and blood inflammatory markers.

Executive function was assessed by the Trail Making Test (TMT) Part A and Part B, as well as the Barkley Deficits in Executive Functioning Scale (BDEFS), in 71 patients (36 men), average age of 40 years (range: 15-82, SD: 15.7). Impairment in executive functioning (BDEFS scores and TMT B scores) correlated with increased levels of Interleukin-6 (IL-6), fibrinogen and ferritin. Moreover, elevated levels of Il-6, fibrinogen, ferritin, tumor necrosis factor-alpha and C-reactive protein have been observed in PACS.

These findings demonstrate that PACS is characterized by the presence of an immuno-inflammatory process, which is associated with diminished executive functioning. Here, we argue in favour of a shift from the non-descriptive definition of ‘mental fog’ to a characterization of a subtype of PACS, associated with alteration in executive functioning. Implication for clinical settings and prevention are discussed.

Source: Pallanti S, Di Ponzio M, Gavazzi G, Gasic G, Besteher B, Heller C, Kikinis R, Makris N, Kikinis Z. From ‘mental fog’ to post-acute COVID-19 syndrome’s executive function alteration: Implications for clinical approach. J Psychiatr Res. 2023 Sep 30;167:10-15. doi: 10.1016/j.jpsychires.2023.09.017. Epub ahead of print. PMID: 37804756. https://pubmed.ncbi.nlm.nih.gov/37804756/

Monocytes subpopulations pattern in the acute respiratory syndrome coronavirus 2 virus infection and after long COVID-19

Abstract:

Introduction and objective: The present study sought to characterize the pattern of monocyte subpopulations in patients during the course of the infections caused by SARS-CoV-2 virus or who presented long COVID-19 syndrome compared to monocytes from patients with zika virus (Zika) or chikungunya virus (CHIKV).

Casuistry: Study with 89 peripheral blood samples from patients, who underwent hemogram and serology (IgG and IgM) for detection of Zika (Control Group 1, n = 18) or CHIKV (Control Group 2, n = 9), and from patients who underwent hemogram and reverse transcription polymerase chain reaction for detection of SARS-CoV-2 at the acute phase of the disease (Group 3, n = 19); and of patients who presented long COVID-19 syndrome (Group 4, n = 43). The monocyte and subpopulations counts were performed by flow cytometry.

Results: No significant difference was observed in the total number of monocytes between the groups. The classical (CD14++CD16) and intermediate (CD14+CD16+) monocytes counts were increased in patients with acute infection or with long COVID-19 syndrome. The monocytes subpopulations counts were lower in patients with infection Zika or CHIKV.

Conclusion: Increase in the monocyte subpopulations in patients with acute infection or with long COVID-19 syndrome may be an important finding of differentiated from the infection Zika or CHIKV.

Source: Pereira VIC, de Brito Junior LC, Falcão LFM, da Costa Vasconcelos PF, Quaresma JAS, Berg AVVD, Paixão APS, Ferreira RIS, Diks IBC. Monocytes subpopulations pattern in the acute respiratory syndrome coronavirus 2 virus infection and after long COVID-19. Int Immunopharmacol. 2023 Oct 5;124(Pt B):110994. doi: 10.1016/j.intimp.2023.110994. Epub ahead of print. PMID: 37804653. https://www.sciencedirect.com/science/article/abs/pii/S156757692301319X

Unraveling Post-COVID-19 Immune Dysregulation Using Machine Learning-based Immunophenotyping

Abstract:

The COVID-19 pandemic has left a significant mark on global healthcare, with many individuals experiencing lingering symptoms long after recovering from the acute phase of the disease, a condition often referred to as “long COVID.” This study delves into the intricate realm of immune dysregulation that ensues in 509 post-COVID-19 patients across multiple Iraqi regions during the years 2022 and 2023.

Utilizing advanced machine learning techniques for immunophenotyping, this research aims to shed light on the diverse immune dysregulation patterns present in long COVID patients. By analyzing a comprehensive dataset encompassing clinical, immunological, and demographic information, the study provides valuable insights into the complex interplay of immune responses following COVID-19 infection.

The findings reveal that long COVID is associated with a spectrum of immune dysregulation phenomena, including persistent inflammation, altered cytokine profiles, and abnormal immune cell subsets. These insights highlight the need for personalized interventions and tailored treatment strategies for individuals suffering from long COVID-19.

This research represents a significant step forward in our understanding of the post-COVID-19 immune landscape and opens new avenues for targeted therapies and clinical management of long COVID patients. As the world grapples with the long-term implications of the pandemic, these findings offer hope for improving the quality of life for those affected by this enigmatic condition.

Source: Maitham G. Yousif, Ghizal Fatima and Hector J. Castro et al. Unraveling Post-COVID-19 Immune Dysregulation Using Machine Learning-based Immunophenotyping. 2023. https://arxiv.org/ftp/arxiv/papers/2310/2310.01428.pdf (Full text)

How long is Long-COVID? Symptomatic improvement between 12 and 18 months in a prospective cohort study

Abstract:

Introduction COVID-19 infection can precede, in a proportion of patients, a prolonged syndrome including fatigue, exercise intolerance, mood and cognitive problems. This study aimed to describe the profile of fatigue-related, exercise-related, mood-related and cognitive-related outcomes in a COVID-19-exposed group compared with controls.

Methods 113 serving UK Armed Forces participants were followed up at 5, 12 (n=88) and 18 months (n=70) following COVID-19. At 18 months, 56 were in the COVID-19-exposed group with 14 matched controls. Exposed participants included hospitalised (n=25) and community (n=31) managed participants. 43 described at least one of the six most frequent symptoms at 5 months: fatigue, shortness of breath, chest pain, joint pain, exercise intolerance and anosmia. Participants completed a symptom checklist, patient-reported outcome measures (PROMs), the National Institute for Health cognitive battery and a 6-minute walk test (6MWT). PROMs included the Fatigue Assessment Scale (FAS), Generalised Anxiety Disorder-7 (GAD-7), Patient Health Questionnaire-9 (PHQ-9) and Patient Checklist-5 (PCL-5) for post-traumatic stress.

Results At 5 and 12 months, exposed participants presented with higher PHQ-9, PCL-5 and FAS scores than controls (ES (effect size) ≥0.25, p≤0.04). By 12 months, GAD-7 was not significantly different to controls (ES <0.13, p=0.292). Remaining PROMs lost significant difference by 18 months (ES ≤0.11, p≥0.28). No significant differences in the cognitive scales were observed at any time point (F=1.96, p=0.167). At 5 and 12 months, exposed participants recorded significantly lower distances on the 6MWT (ηp2≥0.126, p<0.01). 6MWT distance lost significant difference by 18 months (ηp2<0.039, p>0.15).

Conclusions This prospective cohort-controlled study observed adverse outcomes in depression, post-traumatic stress, fatigue and submaximal exercise performance up to 12 months but improved by 18-month follow-up, in participants exposed to COVID-19 compared with a matched control group.

Source: Barker-Davies RM, O’Sullivan O, Holdsworth DA, et alHow long is Long-COVID? Symptomatic improvement between 12 and 18 months in a prospective cohort studyBMJ Mil Health Published Online First: 03 October 2023. doi: 10.1136/military-2023-002500 https://militaryhealth.bmj.com/content/early/2023/10/03/military-2023-002500.abstract (Full text available as PDF file)