Multimodal treatment strategies for homebound people with severe ME/CFS: a scoping review

Abstract:

Purpose: This scoping review aims to provide an overview of previously published treatment strategies that are multimodal, rather than purely drug-based and may be considered for home- or bedbound ME/CFS patients. Thus, the focus lies upon the analyses of telemedicine as well as home treatment elements. In addition, the evaluation and assessment methods used in these studies will be further discussed.

Methods: Using the scoping review method, a literature analysis was conducted resulting in a total of 14 publications which met the predefined criteria. Inclusion was based on models applicable to housebound individuals with ME/CFS, focusing on social medicine and psychological support services rather than individual drug strategies.

Results: The analysis demonstrated that the appropriate treatment methods were predominantly home visits (n=5) or a telemedicine format (n=7). Studies which used alternative settings were included if conversion to a telemedicine format was viable. The important factors highlighted in several studies (n=8), when considering this patient group, were individualisation and flexibility of the treatment methods – and thus the ability to address the day-to-day levels of impairment. The explicit involvement of families in the treatment plan were described in a total of six studies. In ten articles, the treatment concept was additionally evaluated, predominantly using questionnaires (n=7), whilst the questionnaires used were not consistent. Qualitative evaluations were invariably conducted using Brown and Clarke‘s thematic analysis (n=3).

Conclusion: Publications on multimodal treatment strategies for homebound ME/CFS patients are rare. However approaches using home visits or telemedicine are described. The majority of identified publications addressed the need for individualised as well as flexible patient care, whilst some were dedicated to the added value of involving the patients’ family. The data outline the specific challenges associated with the care of severely affected ME/CFS patients that should also be considered in the context of research.

Source: Mayer-Huber S, Kircher A, Eberhartinger M, Stojanov S, Behrends U. Multimodale Behandlungsstrategien für hausgebundene Menschen mit schwerem ME/CFS: ein Scoping Review. Gesundheitswesen. 2024 May 10. German. doi: 10.1055/a-2323-4108. Epub ahead of print. PMID: 38729210. https://www.thieme-connect.de/products/ejournals/abstract/10.1055/a-2323-4108

A Narrative Review on Gut Microbiome Disturbances and Microbial Preparations in ME/CFS: Implications for Long COVID

Abstract:

Myalgic Encephalomyelitis, also known as Chronic Fatigue Syndrome (ME/CFS) and Long COVID are characterized by debilitating post-exertional malaise and other core symptoms related to immune dysregulation resultant from post-viral infection, including mitochondrial dysfunction, chronic neuroinflammation and gut dysbiosis. The reported associations between altered microbiota composition and cardinal symptoms of ME/CFS and Long COVID, suggesting that use of microbial preparations, such as probiotics, by restoring the homeostasis of the brain-immune-gut axis may help in the management of symptoms in both conditions.

Therefore, this review aims to investigate the implications of alerted gut microbiome and assess the evidence supporting use of microbial-based preparations, including probiotics, synbiotics, postbiotics alone and/or in combination with other nutraceuticals in the management of fatigue, inflammation, as well as neuropsychiatric and gastrointestinal symptoms among patients with ME/CFS and Long COVID.

Source: Jurek, J.M.; Castro-Marrero, J. A Narrative Review on Gut Microbiome Disturbances and Microbial Preparations in ME/CFS: Implications for Long COVID. Preprints 2024, 2024042021. https://doi.org/10.20944/preprints202404.2021.v1  https://www.preprints.org/manuscript/202404.2021/v1 (Full text available as PDF file)

Phenylephrine Alters Phase Synchronization between Cerebral Blood Velocity and Blood Pressure in Chronic Fatigue Syndrome with Orthostatic Intolerance

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) with orthostatic intolerance (OI) is characterized by neuro-cognitive deficits perhaps related to upright hypocapnia and loss of cerebral autoregulation (CA). We performed N-back neurocognition testing and calculated the phase synchronization index (PhSI) between Arterial Pressure (AP) and cerebral blood velocity (CBV) as a time-dependent measurement of cerebral autoregulation in 11 control (mean age=24.1 years) and 15 ME/CFS patients (mean age=21.8 years). All ME/CFS patients had postural tachycardia syndrome (POTS).

A 10-minute 60⁰ head-up tilt (HUT) significantly increased heart rate (109.4 ± 3.9 vs. 77.2 ± 1.6 beats/min, P <0.05) and respiratory rate (20.9 ± 1.7 vs. 14.2 ± 1.2 breaths/min, P < 0.05) and decreased end-tidal CO2 (ETCO2; 33.9 ± 1.1 vs. 42.8 ± 1.2 Torr, P < 0.05) in ME/CFS vs. control. In ME/CFS, HUT significantly decreased CBV compared to control (-22.5% vs -8.7%, p<0.005).

To mitigate the orthostatic CBV reduction, we administered supplemental CO2, phenylephrine and acetazolamide and performed N-back testing supine and during HUT. Only phenylephrine corrected the orthostatic decrease in neurocognition by reverting % correct n=4 N-back during HUT in ME/CFS similar to control (ME/CFS=38.5±5.5 vs. ME/CFS+PE= 65.6±5.7 vs. Control 56.9±7.5). HUT in ME/CFS resulted in increased PhSI values indicating decreased CA. While CO2 and Acetazolamide had no effect on PhSI in ME/CFS, PE caused a significant reduction in PhSI (ME/CFS=0.80±0.03 vs ME/CFS+PE= 0.69±0.04, p< 0.05) and improved cerebral autoregulation. Thus, PE improved neurocognitive function in ME/CFS patients, perhaps related to improved neurovascular coupling, cerebral autoregulation and maintenance of CBV.

Source: Medow MS, Stewart JM. Phenylephrine Alters Phase Synchronization between Cerebral Blood Velocity and Blood Pressure in Chronic Fatigue Syndrome with Orthostatic Intolerance. Am J Physiol Regul Integr Comp Physiol. 2024 Apr 29. doi: 10.1152/ajpregu.00071.2024. Epub ahead of print. PMID: 38682242. https://journals.physiology.org/doi/abs/10.1152/ajpregu.00071.2024 (Full text available as PDF file)

Research progress in the treatment of chronic fatigue syndrome through interventions targeting the hypothalamus-pituitary-adrenal axis

Abstract:

Chronic fatigue syndrome (CFS) causes great harm to individuals and society. Elucidating the pathogenesis of CFS and developing safe and effective treatments are urgently needed. This paper reviews the functional changes in the hypothalamus-pituitary-adrenal (HPA) axis in patients with CFS and the associated neuroendocrine mechanisms. Despite some controversy, the current mainstream research evidence indicates that CFS patients have mild hypocortisolism, weakened daily variation in cortisol, a weakened response to the HPA axis, and an increase in negative feedback of the HPA axis. The relationship between dysfunction of the HPA axis and the typical symptoms of CFS are discussed, and the current treatment methods are reviewed.

Source: Yi-Dan Zhang, Li-Na Wang. Research progress in the treatment of chronic fatigue syndrome through interventions targeting the hypothalamus-pituitary-adrenal axis. Front. Endocrinol., 09 April 2024, Sec. Neuroendocrine Science, Volume 15 – 2024 | https://doi.org/10.3389/fendo.2024.1373748 https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2024.1373748/full

The gastrointestinal microbiota in the development of ME/CFS: a critical view and potential perspectives

Abstract:

Like other infections, a SARS-CoV-2 infection can also trigger Post-Acute Infection Syndromes (PAIS), which often progress into myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS, characterized by post-exercise malaise (PEM), is a severe multisystemic disease for which specific diagnostic markers or therapeutic concepts have not been established.

Despite numerous indications of post-infectious neurological, immunological, endocrinal, and metabolic deviations, the exact causes and pathophysiology remain unclear. To date, there is a paucity of data, that changes in the composition and function of the gastrointestinal microbiota have emerged as a potential influencing variable associated with immunological and inflammatory pathways, shifts in ME/CFS. It is postulated that this dysbiosis may lead to intestinal barrier dysfunction, translocation of microbial components with increased oxidative stress, and the development or progression of ME/CFS.

In this review, we detailed discuss the findings regarding alterations in the gastrointestinal microbiota and its microbial mediators in ME/CFS. When viewed critically, there is currently no evidence indicating causality between changes in the microbiota and the development of ME/CFS. Most studies describe associations within poorly defined patient populations, often combining various clinical presentations, such as irritable bowel syndrome and fatigue associated with ME/CFS.

Nevertheless, drawing on analogies with other gastrointestinal diseases, there is potential to develop strategies aimed at modulating the gut microbiota and/or its metabolites as potential treatments for ME/CFS and other PAIS. These strategies should be further investigated in clinical trials.

Source: Andreas Stallmach, Stefanie Quickert, Christian Puta, Philipp A. Reuken. The gastrointestinal microbiota in the development of ME/CFS: a critical view and potential perspectives. Front. Immunol., 27 March 2024, Sec. Microbial Immunology, Volume 15 – 2024. https://doi.org/10.3389/fimmu.2024.1352744 https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1352744/full (Full text)

A Case Report of Chronic Epipharyngitis With Chronic Fatigue Treated With Epipharyngeal Abrasive Therapy (EAT)

Abstract:

A case of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) with chronic epipharyngitis was treated with epipharyngeal abrasive therapy (EAT). The symptoms of ME/CFS improved along with the improvement of chronic epipharyngitis. The patient was followed up with endocrine and autonomic function tests.

Endocrine function tests included salivary cortisol and salivary α-amylase activity. Salivary α-amylase activity was stimulated by EAT. EAT improved the diurnal variability of salivary cortisol secretion. Autonomic function tests included heart rate variability analysis by orthostatic stress test. EAT normalized parasympathetic and sympathetic reflexes over time and regulated autonomic balance.

Based on the improvement of symptoms and test results, EAT was considered effective for ME/CFS. A literature review was conducted on the mechanism of the therapeutic effect of EAT on ME/CFS.

Source: Hirobumi I. A Case Report of Chronic Epipharyngitis With Chronic Fatigue Treated With Epipharyngeal Abrasive Therapy (EAT). Cureus. 2024 Feb 23;16(2):e54742. doi: 10.7759/cureus.54742. PMID: 38405656; PMCID: PMC10884883. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884883/ (Full text)

Association between fatigue, peripheral serotonin, and L-carnitine in hypothyroidism and in chronic fatigue syndrome

Abstract:

Background: Fatigue of unknown origin is a hallmark symptom in chronic fatigue syndrome (CFS) and is also found in 20% of hypothyroidism patients despite appropriate levothyroxine treatment. Here, we suggest that in these disorders, peripheral serotonin levels are low, and elevating them to normal range with L-carnitine is accompanied with reduced fatigue.

Methods: We conducted a retrospective analysis of follow-up clinical data (CFS N=12; hypothyroidism with fatigue N=40) where serum serotonin and fatigue levels were compared before vs. after 7 weeks of oral L-carnitine supplementation.

Results: After L-carnitine, serotonin increased (8-fold in CFS, Sig. = 0.002, 6-fold in hypothyroidism, Sig. < 0.001) whereas fatigue decreased (2-fold in both CFS and hypothyroidism, Sig. = 0.002 for CFS, Sig. < 0.001 for hypothyroidism). There was a negative correlation between serotonin level and fatigue (for CFS, rho = -0.49 before and -0.67 after L-carnitine; for hypothyroidism, rho = -0.24 before and -0.83 after L-carnitine).

Conclusions: These findings suggest a new link between low peripheral serotonin, L-carnitine, and fatigue.

Source: Tommi Raij, Kari Raij. Association between fatigue, peripheral serotonin, and L-carnitine in hypothyroidism and in chronic fatigue syndrome. Front. Endocrinol. Sec. Neuroendocrine Science, Volume 15 – 2024 | doi: 10.3389/fendo.2024.1358404 https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2024.1358404/abstract

Advancing Research and Treatment: An Overview of Clinical Trials in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Future Perspectives

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic, debilitating, and multi-faceted illness. Heterogenous onset and clinical presentation with additional comorbidities make it difficult to diagnose, characterize, and successfully treat. Current treatment guidelines focus on symptom management, but with no clear target or causative mechanism, remission rates are low, and fewer than 5% of patients return to their pre-morbid activity levels. Therefore, there is an urgent need to undertake robust clinical trials to identify effective treatments.
This review synthesizes insights from clinical trials exploring pharmacological interventions and dietary supplements targeting immunological, metabolic, gastrointestinal, neurological, and neuroendocrine dysfunction in ME/CFS patients which require further exploration. Additionally, the trialling of alternative interventions in ME/CFS based on reported efficacy in the treatment of illnesses with overlapping symptomology is also discussed. Finally, we provide important considerations and make recommendations, focusing on outcome measures, to ensure the execution of future high-quality clinical trials to establish clinical efficacy of evidence-based interventions that are needed for adoption in clinical practice.
Source: Seton KA, Espejo-Oltra JA, Giménez-Orenga K, Haagmans R, Ramadan DJ, Mehlsen J on behalf of the European ME Research Group for Early Career Researchers (Young EMERG). Advancing Research and Treatment: An Overview of Clinical Trials in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Future Perspectives. Journal of Clinical Medicine. 2024; 13(2):325. https://doi.org/10.3390/jcm13020325 https://www.mdpi.com/2077-0383/13/2/325 (Full text)

Identification of CD8 T-cell dysfunction associated with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long COVID and treatment with a nebulized antioxidant/anti-pathogen agent in a retrospective case series

Highlights:

• Both Long COVID and ME/CFS are characterized by dysfunctional CD8 T-cells with severe deficiencies in their abilities to produce IFNγ and TNFα.

• In a small Long COVID and ME/CFS case series, patients’ immune deficiency and health improve during treatment period with a nebulized antioxidant, anti-pathogen and immune-modulatory pharmacological agent.

• This work provides evidence of a useful biomarker, CD8 T-cell dysfunction reminiscent of T cell exhaustion, that may assist diagnosis and have utility for tracking disease outcome during therapy, including response to a potential new treatment.

Abstract:

Background: Patients with post-acute sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection (PASC, i.e., Long COVID) have a symptom complex highly analogous to many features of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), suggesting they may share some aspects of pathogenesis in these similar disorders. ME/CFS is a complex disease affecting numerous organ systems and biological processes and is often preceded by an infection-like episode. It is postulated that the chronic manifestations of illness may result from an altered host response to infection or inability to resolve inflammation, as is being reported in Long COVID. The immunopathogenesis of both disorders is still poorly understood. Here, we show data that suggest Long COVID and ME/CFS may be due to an aberrant response to an immunological trigger-like infection, resulting in a dysregulated immune system with CD8 T-cell dysfunction reminiscent of some aspects of T-cell clonal exhaustion, a phenomenon associated with oxidative stress. As there is an urgent need for diagnostic tools and treatment strategies for these two related disabling disorders, here, in a retrospective case series, we have also identified a potential nebulized antioxidant/anti-pathogen treatment that has evidence of a good safety profile. This nebulized agent is comprised of five ingredients previously reported individually to relieve oxidative stress, attenuate NF-κB signaling, and/or to act directly to inhibit pathogens, including viruses. Administration of this treatment by nebulizer results in rapid access of small doses of well-studied antioxidants and agents with anti-pathogen potential to the lungs; components of this nebulized agent are also likely to be distributed systemically, with potential to enter the central nervous system.

Methods and Findings: We conducted an analysis of CD8 T-cell function and severity of symptoms by self-report questionnaires in ME/CFS, Long COVID and healthy controls. We developed a CD8 T-cell functional assay, assessing CD8 T-cell dysfunction by intracellular cytokine staining (ICS) in a group of ME/CFS (n = 12) and Long COVID patients (n = 8), comparing to healthy controls (HC) with similar age and sex (n = 10). Magnet-enriched fresh CD8 T-cells in both patient groups had a significantly diminished capacity to produce both cytokines, IFNγ or TNFα, after PMA stimulation when compared to HC. The symptom severity questionnaire showed similar symptom profiles for the two disorders. Fortuitously, through a retrospective case series, we were able to examine the ICS and questionnaire data of 4 ME/CFS and 4 Long COVID patients in conjunction with their treatment (3–15 months). In parallel with the treatment pursued electively by participants in this retrospective case series, there was an increase in CD8 T-cell IFNγ and TNFα production and a decrease in overall self-reported symptom severity score by 54%. No serious treatment-associated side effects or laboratory anomalies were noted in these patients.

Conclusions: Here, in this small study, we present two observations that appear potentially fundamental to the pathogenesis and treatment of Long COVID and ME/CFS. The first is that both disorders appear to be characterized by dysfunctional CD8 T-cells with severe deficiencies in their abilities to produce IFNγ and TNFα. The second is that in a small retrospective Long COVID and ME/CFS case series, this immune dysfunction and patient health improved in parallel with treatment with an immunomodulatory, antioxidant pharmacological treatment with anticipated anti-pathogen activity. This work provides evidence of the potential utility of a biomarker, CD8 T-cell dysfunction, and suggests the potential for benefit from a new nebulized antioxidant/anti-pathogen treatment. These immune biomarker data may help build capacity for improved diagnosis and tracking of treatment outcomes during clinical trials for both Long COVID and ME/CFS while providing clues to new treatment avenues that suggest potential efficacy for both conditions.

Source: Gil, A., Hoag, G.E., Salerno, J.P., Hornig, M., Klimas, N., Selin, L.K. Identification of CD8 T-cell dysfunction associated with symptoms in myalgic encephalomyelitis/ chronic fatigue syndrome (ME/CFS) and Long COVID and treatment with a nebulized antioxidant/antipathogen agent in a retrospective case series. Brain, Behavior, & Immunity – Health (2024), doi: https://doi.org/10.1016/j.bbih.2023.100720 https://www.sciencedirect.com/science/article/pii/S2666354623001345 (Full text)

Mitochondrial Dysfunction and Coenzyme Q10 Supplementation in Post-Viral Fatigue Syndrome: An Overview

Abstract:

Post-viral fatigue syndrome (PVFS) encompasses a wide range of complex neuroimmune disorders of unknown causes characterised by disabling post-exertional fatigue, myalgia and joint pain, cognitive impairments, unrefreshing sleep, autonomic dysfunction, and neuropsychiatric symptoms. It includes myalgic encephalomyelitis, also known as chronic fatigue syndrome (ME/CFS); fibromyalgia (FM); and more recently post-COVID-19 condition (long COVID). To date, there are no definitive clinical case criteria and no FDA-approved pharmacological therapies for PVFS. Given the current lack of effective treatments, there is a need to develop novel therapeutic strategies for these disorders.
Mitochondria, the cellular organelles responsible for tissue energy production, have recently garnered attention in research into PVFS due to their crucial role in cellular bioenergetic metabolism in these conditions. The accumulating literature has identified a link between mitochondrial dysfunction and low-grade systemic inflammation in ME/CFS, FM, and long COVID. To address this issue, this article aims to critically review the evidence relating to mitochondrial dysfunction in the pathogenesis of these disorders; in particular, it aims to evaluate the effectiveness of coenzyme Q10 supplementation on chronic fatigue and pain symptoms as a novel therapeutic strategy for the treatment of PVFS.
Source: Mantle D, Hargreaves IP, Domingo JC, Castro-Marrero J. Mitochondrial Dysfunction and Coenzyme Q10 Supplementation in Post-Viral Fatigue Syndrome: An Overview. International Journal of Molecular Sciences. 2024; 25(1):574. https://doi.org/10.3390/ijms25010574 https://www.mdpi.com/1422-0067/25/1/574 (Full text)