Brain dysfunction as one cause of CFS symptoms including difficulty with attention and concentration

Abstract:

We have been able to reduce substantially patient pool heterogeneity by identifying phenotypic markers that allow the researcher to stratify chronic fatigue syndrome (CFS) patients into subgroups. To date, we have shown that stratifying based on the presence or absence of comorbid psychiatric diagnosis leads to a group with evidence of neurological dysfunction across a number of spheres.

We have also found that stratifying based on the presence or absence of comorbid fibromyalgia leads to information that would not have been found on analyzing the entire, unstratified patient group. Objective evidence of orthostatic intolerance (OI) may be another important variable for stratification and may define a group with episodic cerebral hypoxia leading to symptoms.

We hope that this review will encourage other researchers to collect data on discrete phenotypes in CFS to allow this work to continue more broadly. Finding subgroups of CFS suggests different underlying pathophysiological processes responsible for the symptoms seen. Understanding those processes is the first step toward developing discrete treatments for each.

 

Source: Natelson BH. Brain dysfunction as one cause of CFS symptoms including difficulty with attention and concentration. Front Physiol. 2013 May 20;4:109. doi: 10.3389/fphys.2013.00109. ECollection 2013. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657628/ (Full article)

 

Neuromuscular strain as a contributor to cognitive and other symptoms in chronic fatigue syndrome: hypothesis and conceptual model

Abstract:

Individuals with chronic fatigue syndrome (CFS) have heightened sensitivity and increased symptoms following various physiologic challenges, such as orthostatic stress, physical exercise, and cognitive challenges. Similar heightened sensitivity to the same stressors in fibromyalgia (FM) has led investigators to propose that these findings reflect a state of central sensitivity.

A large body of evidence supports the concept of central sensitivity in FM. A more modest literature provides partial support for this model in CFS, particularly with regard to pain. Nonetheless, fatigue and cognitive dysfunction have not been explained by the central sensitivity data thus far.

Peripheral factors have attracted attention recently as contributors to central sensitivity. Work by Brieg, Sunderland, and others has emphasized the ability of the nervous system to undergo accommodative changes in length in response to the range of limb and trunk movements carried out during daily activity. If that ability to elongate is impaired-due to movement restrictions in tissues adjacent to nerves, or due to swelling or adhesions within the nerve itself-the result is an increase in mechanical tension within the nerve. This adverse neural tension, also termed neurodynamic dysfunction, is thought to contribute to pain and other symptoms through a variety of mechanisms. These include mechanical sensitization and altered nociceptive signaling, altered proprioception, adverse patterns of muscle recruitment and force of muscle contraction, reduced intra-neural blood flow, and release of inflammatory neuropeptides. Because it is not possible to differentiate completely between adverse neural tension and strain in muscles, fascia, and other soft tissues, we use the more general term “neuromuscular strain.”

In our clinical work, we have found that neuromuscular restrictions are common in CFS, and that many symptoms of CFS can be reproduced by selectively adding neuromuscular strain during the examination. In this paper we submit that neuromuscular strain is a previously unappreciated peripheral source of sensitizing input to the nervous system, and that it contributes to the pathogenesis of CFS symptoms, including cognitive dysfunction.

 

Source: Rowe PC, Fontaine KR, Violand RL. Neuromuscular strain as a contributor to cognitive and other symptoms in chronic fatigue syndrome: hypothesis and conceptual model. Front Physiol. 2013 May 16;4:115. doi: 10.3389/fphys.2013.00115. eCollection 2013.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655286/ (Full article)

 

In myalgic encephalomyelitis/chronic fatigue syndrome, increased autoimmune activity against 5-HT is associated with immuno-inflammatory pathways and bacterial translocation

Abstract:

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is accompanied by activation of immuno-inflammatory pathways, increased bacterial translocation and autoimmune responses to serotonin (5-HT). Inflammation is known to damage 5-HT neurons while bacterial translocation may drive autoimmune responses. This study has been carried out to examine the autoimmune responses to 5-HT in ME/CFS in relation to inflammation and bacterial translocation.

METHODS: We examined 5-HT antibodies in 117 patients with ME/CFS (diagnosed according to the centers for disease control and prevention criteria, CDC) as compared with 43 patients suffering from chronic fatigue (CF) but not fulfilling the CDC criteria and 35 normal controls. Plasma interleukin-1 (IL-1), tumor necrosis factor (TNF)α, neopterin and the IgA responses to Gram-negative bacteria were measured. Severity of physio-somatic symptoms was measured using the fibromyalgia and chronic fatigue syndrome rating scale (FF scale).

RESULTS: The incidence of positive autoimmune activity against 5-HT was significantly higher (p<0.001) in ME/CFS (61.5%) than in patients with CF (13.9%) and controls (5.7%). ME/CFS patients with 5-HT autoimmune activity displayed higher TNFα, IL-1 and neopterin and increased IgA responses against LPS of commensal bacteria than those without 5-HT autoimmune activity. Anti-5-HT antibody positivity was significantly associated with increased scores on hyperalgesia, fatigue, neurocognitive and autonomic symptoms, sadness and a flu-like malaise.

DISCUSSION: The results show that, in ME/CFS, increased 5-HT autoimmune activity is associated with activation of immuno-inflammatory pathways and increased bacterial translocation, factors which are known to play a role in the onset of autoimmune reactions. 5-HT autoimmune activity could play a role in the pathophysiology of ME/CFS and the onset of physio-somatic symptoms. These results provide mechanistic support for the notion that ME/CFS is a neuro-immune disorder.

Copyright © 2013 Elsevier B.V. All rights reserved.

 

Source: Maes M, Ringel K, Kubera M, Anderson G, Morris G, Galecki P, Geffard M. In myalgic encephalomyelitis/chronic fatigue syndrome, increased autoimmune activity against 5-HT is associated with immuno-inflammatory pathways and bacterial translocation. J Affect Disord. 2013 Sep 5;150(2):223-30. doi: 10.1016/j.jad.2013.03.029. Epub 2013 May 10. https://www.ncbi.nlm.nih.gov/pubmed/23664637

 

Could mitochondrial dysfunction be a differentiating marker between chronic fatigue syndrome and fibromyalgia?

Abstract:

Chronic fatigue syndrome (CFS) and fibromyalgia (FM) are complex and serious illnesses that affect approximately 2.5% and 5% of the general population worldwide, respectively. The etiology is unknown; however, recent studies suggest that mitochondrial dysfunction has been involved in the pathophysiology of both conditions. We have investigated the possible association between mitochondrial biogenesis and oxidative stress in patients with CFS and FM.

We studied 23 CFS patients, 20 FM patients, and 15 healthy controls. Peripheral blood mononuclear cell showed decreased levels of Coenzyme Q10 from CFS patients (p<0.001 compared with controls) and from FM subjects (p<0.001 compared with controls) and ATP levels for CFS patients (p<0.001 compared with controls) and for FM subjects (p<0.001 compared with controls).

On the contrary, CFS/FM patients had significantly increased levels of lipid peroxidation, respectively (p<0.001 for both CFS and FM patients with regard to controls) that were indicative of oxidative stress-induced damage. Mitochondrial citrate synthase activity was significantly lower in FM patients (p<0.001) and, however, in CFS, it resulted in similar levels than controls. Mitochondrial DNA content (mtDNA/gDNA ratio) was normal in CFS and reduced in FM patients versus healthy controls, respectively (p<0.001). Expression levels of peroxisome proliferator-activated receptor gamma-coactivator 1-alpha and transcription factor A, mitochondrial by immunoblotting were significantly lower in FM patients (p<0.001) and were normal in CFS subjects compared with healthy controls.

These data lead to the hypothesis that mitochondrial dysfunction-dependent events could be a marker of differentiation between CFS and FM, indicating the mitochondria as a new potential therapeutic target for these conditions.

 

Source: Castro-Marrero J, Cordero MD, Sáez-Francas N, Jimenez-Gutierrez C, Aguilar-Montilla FJ, Aliste L, Alegre-Martin J. Could mitochondrial dysfunction be a differentiating marker between chronic fatigue syndrome and fibromyalgia? Antioxid Redox Signal. 2013 Nov 20;19(15):1855-60. doi: 10.1089/ars.2013.5346. Epub 2013 May 29. https://www.ncbi.nlm.nih.gov/pubmed/23600892

 

Detection of mycotoxins in patients with chronic fatigue syndrome

Abstract:

Over the past 20 years, exposure to mycotoxin producing mold has been recognized as a significant health risk. Scientific literature has demonstrated mycotoxins as possible causes of human disease in water-damaged buildings (WDB). This study was conducted to determine if selected mycotoxins could be identified in human urine from patients suffering from chronic fatigue syndrome (CFS).

Patients (n = 112) with a prior diagnosis of CFS were evaluated for mold exposure and the presence of mycotoxins in their urine. Urine was tested for aflatoxins (AT), ochratoxin A (OTA) and macrocyclic trichothecenes (MT) using Enzyme Linked Immunosorbent Assays (ELISA). Urine specimens from 104 of 112 patients (93%) were positive for at least one mycotoxin (one in the equivocal range).

Almost 30% of the cases had more than one mycotoxin present. OTA was the most prevalent mycotoxin detected (83%) with MT as the next most common (44%). Exposure histories indicated current and/or past exposure to WDB in over 90% of cases. Environmental testing was performed in the WDB from a subset of these patients.

This testing revealed the presence of potentially mycotoxin producing mold species and mycotoxins in the environment of the WDB. Prior testing in a healthy control population with no history of exposure to a WDB or moldy environment (n = 55) by the same laboratory, utilizing the same methods, revealed no positive cases at the limits of detection.

 

Source: Brewer JH, Thrasher JD, Straus DC, Madison RA, Hooper D. Detection of mycotoxins in patients with chronic fatigue syndrome. Toxins (Basel). 2013 Apr 11;5(4):605-17. doi: 10.3390/toxins5040605. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705282/ (Full article)

 

Daily cytokine fluctuations, driven by leptin, are associated with fatigue severity in chronic fatigue syndrome: evidence of inflammatory pathology

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) is a debilitating disorder characterized by persistent fatigue that is not alleviated by rest. The lack of a clearly identified underlying mechanism has hindered the development of effective treatments. Studies have demonstrated elevated levels of inflammatory factors in patients with CFS, but findings are contradictory across studies and no biomarkers have been consistently supported. Single time-point approaches potentially overlook important features of CFS, such as fluctuations in fatigue severity. We have observed that individuals with CFS demonstrate significant day-to-day variability in their fatigue severity.

METHODS: Therefore, to complement previous studies, we implemented a novel longitudinal study design to investigate the role of cytokines in CFS pathophysiology. Ten women meeting the Fukuda diagnostic criteria for CFS and ten healthy age- and body mass index (BMI)-matched women underwent 25 consecutive days of blood draws and self-reporting of symptom severity. A 51-plex cytokine panel via Luminex was performed for each of the 500 serum samples collected. Our primary hypothesis was that daily fatigue severity would be significantly correlated with the inflammatory adipokine leptin, in the women with CFS and not in the healthy control women. As a post-hoc analysis, a machine learning algorithm using all 51 cytokines was implemented to determine whether immune factors could distinguish high from low fatigue days.

RESULTS: Self-reported fatigue severity was significantly correlated with leptin levels in six of the participants with CFS and one healthy control, supporting our primary hypothesis. The machine learning algorithm distinguished high from low fatigue days in the CFS group with 78.3% accuracy.

CONCLUSIONS: Our results support the role of cytokines in the pathophysiology of CFS.

 

Source: Stringer EA, Baker KS, Carroll IR, Montoya JG, Chu L, Maecker HT, Younger JW. Daily cytokine fluctuations, driven by leptin, are associated with fatigue severity in chronic fatigue syndrome: evidence of inflammatory pathology. J Transl Med. 2013 Apr 9;11:93. doi: 10.1186/1479-5876-11-93. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637529/ (Full article)

 

Inflammatory and oxidative and nitrosative stress cascades as new drug targets in myalgic encephalomyelitis and chronic fatigue syndrome

Abstract:

Myalgic encephalomyelitis (ME), chronic fatigue syndrome (CFS) and chronic fatigue (CF) are distinct diagnostic categories with regard to clinical symptoms, severity of illness and biomarkers. Patients with ME and CFS show higher scores on fatigue, neurocognitive disorders, hyperalgesia, autonomic symptoms, postexertional malaise and a subjective feeling of infection than patients with CF. ME is characterized by increased postexertional malaise, a subjective feeling of infection and neurocognitive disorders and is a more severe variant than CFS.

Fukuda’s 1994 CDC criteria are adequate to make a distinction between patients with ME/CFS and CF, while ME/CFS patients should be subdivided into those with and without postexertional malaise into ME and CFS, respectively. Different interrelated pathophysiological mechanisms play a role in ME/CFS, i.e. (1) inflammation and immune activation, (2) oxidative and nitrosative stress and lowered antioxidant defenses, (3) activation of cell signaling networks, e.g. nuclear factor ĸβ, the 2 9 ,5 9 -oligoadenylate/RNase-L and/or protein kinase R pathway, (4) a transition towards autoimmune reactions, and (5) bacterial translocation.

The inflammatory biomarkers are higher in ME/CFS than in CF and higher in ME than in CFS. The above-mentioned pathways may explain the onset of characteristic ME/CFS symptoms, such as fatigue, malaise, autonomic symptoms, hyperalgesia, and neurocognitive symptoms. Different etiological factors may trigger ME/CFS/CF, e.g. viral and bacterial infections, and (auto)immune and inflammatory disorders, while psychosocial and physical stressors act as modulating factors. New pathophysiologically driven drug candidates for ME and CFS are discussed which target the pathways that play a role in ME/CFS.

Copyright © 2013 S. Karger AG, Basel.

 

Source: Maes M. Inflammatory and oxidative and nitrosative stress cascades as new drug targets in myalgic encephalomyelitis and chronic fatigue syndrome. Mod Trends Pharmacopsychiatri. 2013;28:162-74. doi: 10.1159/000343982. Epub 2013 Feb 27. https://www.ncbi.nlm.nih.gov/pubmed/25224898

 

Targeting mitochondrial dysfunction in the treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) – a clinical audit

Abstract:

We report on an audit of 138 ME/CFS patients who attended a private practice and took the ATP Profile biomedical test. The results revealed that all of these patients had measureable mitochondrial dysfunction. A basic treatment regime, based on 1) eating the evolutionary correct stone-age diet, 2) ensuring optimum hours of good quality sleep, 3) taking a standard package of nutritional supplements, and 4) getting the right balance between work and rest, was recommended for all patients. Additions to the basic regime were tailored for each patient according to the results of the ATP Profile and additional nutritional tests and clues from the clinical history.

Mitochondrial function is typically impaired in two ways: substrate or co-factor deficiency, and inhibition by chemicals, exogenous or endogenous. For the former, additional nutrients are recommended where there is a deficiency, and for the latter, improvement of anti-oxidant status and selective chelation therapy or far-infrared saunas are appropriate. We show case histories of nine patients who have taken the ATP Profile on three or four occasions, and a before-and-after treatment summary of the 34 patients who have had at least two ATP Profile tests separated by some months.

Finally, we summarize the results for the 30 patients who followed all aspects of the treatment regime and compare them with the 4 patients who were lax on two or more aspects of the treatment regime. All patients who followed the treatment regime improved in mitochondrial function by on average a factor of 4.

 

Source: Myhill S, Booth NE, McLaren-Howard J. Targeting mitochondrial dysfunction in the treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) – a clinical audit. Int J Clin Exp Med. 2013;6(1):1-15. Epub 2012 Nov 20. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3515971/ (Full article)

 

Clinical characteristics of a novel subgroup of chronic fatigue syndrome patients with postural orthostatic tachycardia syndrome

Abstract:

OBJECTIVES: A significant proportion of patients with chronic fatigue syndrome (CFS) also have postural orthostatic tachycardia syndrome (POTS). We aimed to characterize these patients and differentiate them from CFS patients without POTS in terms of clinical and autonomic features.

METHODS: A total of 179 patients with CFS (1994 Centers for Disease Control and Prevention criteria) attending one of the largest Department of Health-funded CFS clinical services were included in this study. Outcome measures were as follows: (i) symptom assessment tools including the fatigue impact scale, Chalder fatigue scale, Epworth sleepiness scale (ESS), orthostatic grading scale (OGS) and hospital anxiety and depression scale (HADS-A and -D, respectively), (ii) autonomic function analysis including heart rate variability and (iii) haemodynamic responses including left ventricular ejection time and systolic blood pressure drop upon standing.

RESULTS: CFS patients with POTS (13%, n = 24) were younger (29 ± 12 vs. 42 ± 13 years, P < 0.0001), less fatigued (Chalder fatigue scale, 8 ± 4 vs. 10 ± 2, P = 0.002), less depressed (HADS-D, 6 ± 4 vs. 9 ± 4, P = 0.01) and had reduced daytime hypersomnolence (ESS, 7 ± 6 vs. 10 ± 5, P = 0.02), compared with patients without POTS. In addition, they exhibited greater orthostatic intolerance (OGS, 11 ± 5; P < 0.0001) and autonomic dysfunction. A combined clinical assessment tool of ESS ≤9 and OGS ≥9 identifies accurately CFS patients with POTS with 100% positive and negative predictive values.

CONCLUSIONS: The presence of POTS marks a distinct clinical group of CFS patents, with phenotypic features differentiating them from those without POTS. A combination of validated clinical assessment tools can determine which CFS patients have POTS with a high degree of accuracy, and thus potentially identify those who require further investigation and consideration for therapy to control heart rate.

© 2013 The Association for the Publication of the Journal of Internal Medicine.

Comment in: Postural orthostatic tachycardia syndrome as a clinically important subgroup of chronic fatigue syndrome: further evidence for central nervous system dysfunctioning. [J Intern Med. 2013]

 

Source: Lewis I, Pairman J, Spickett G, Newton JL. Clinical characteristics of a novel subgroup of chronic fatigue syndrome patients with postural orthostatic tachycardia syndrome. J Intern Med. 2013 May;273(5):501-10. doi: 10.1111/joim.12022. Epub 2013 Jan 7. http://onlinelibrary.wiley.com/doi/10.1111/joim.12022/full (Full article)

 

Lipid and protein oxidation in female patients with chronic fatigue syndrome

Abstract:

INTRODUCTION: Chronic fatigue syndrome (CFS) is a widely recognized problem, characterized by prolonged, debilitating fatigue and a characteristic group of accompanying symptoms, that occurs four times more frequently in women than in men. The aim of the study was to determine the existence of oxidative stress and its possible consequences in female patients with CFS.

MATERIAL AND METHODS: Twenty-four women aged 15-45 who fulfilled the diagnostic criteria for CFS with no comorbidities were recruited and were age matched to a control group of 19 healthy women. After conducting the routine laboratory tests, levels of the lipid oxidation product malondialdehyde (MDA) and protein oxidation protein carbonyl (CO) were determined.

RESULTS: The CFS group had higher levels of triglycerides (p = 0.03), MDA (p = 0.03) and CO (p = 0.002) and lower levels of HDL cholesterol (p = 0.001) than the control group. There were no significant differences in the levels of total protein, total cholesterol or LDL cholesterol.

CONCLUSIONS: The CFS group had an unfavorable lipid profile and signs of oxidative stress induced damage to lipids and proteins. These results might be indicative of early proatherogenic processes in this group of patients who are otherwise at low risk for atherosclerosis. Antioxidant treatment and life style changes are indicated for women with CFS, as well as closer observation in order to assess the degree of atherosclerosis.

 

Source: Tomic S, Brkic S, Maric D, Mikic AN. Lipid and protein oxidation in female patients with chronic fatigue syndrome. Arch Med Sci. 2012 Nov 9;8(5):886-91. doi: 10.5114/aoms.2012.31620. Epub 2012 Nov 7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506242/ (Full article)