Myalgic Encephalomyelitis/Chronic Fatigue Syndrome – Evidence for an autoimmune disease

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a frequent and severe chronic disease drastically impairing life quality. The underlying pathomechanism is incompletely understood yet but there is convincing evidence that in at least a subset of patients ME/CFS has an autoimmune etiology.

In this review, we will discuss current autoimmune aspects for ME/CFS. Immune dysregulation in ME/CFS has been frequently described including changes in cytokine profiles and immunoglobulin levels, T- and B-cell phenotype and a decrease of natural killer cell cytotoxicity. Moreover, autoantibodies against various antigens including neurotransmitter receptors have been recently identified in ME/CFS individuals by several groups. Consistently, clinical trials from Norway have shown that B-cell depletion with rituximab results in clinical benefits in about half of ME/CFS patients.

Furthermore, recent studies have provided evidence for severe metabolic disturbances presumably mediated by serum autoantibodies in ME/CFS. Therefore, further efforts are required to delineate the role of autoantibodies in the onset and pathomechanisms of ME/CFS in order to better understand and properly treat this disease.

Source: Sotzny F, Blanco J, Capelli E, Castro-Marrero J, Steiner S1, Murovska M, Scheibenbogen C; European Network on ME/CFS (EUROMENE). Myalgic Encephalomyelitis/Chronic Fatigue Syndrome – Evidence for an autoimmune disease. Autoimmun Rev. 2018 Apr 7. pii: S1568-9972(18)30088-0. doi: 10.1016/j.autrev.2018.01.009. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/29635081

Higher prevalence of ‘low T3 syndrome’ in patients with chronic fatigue syndrome: A case-control study

Abstract:

Chronic fatigue syndrome (CFS) is a heterogeneous disease with unknown cause(s). CFS symptoms resemble a hypothyroid state, possibly secondary to chronic (low-grade) (metabolic) inflammation. We studied 98 CFS patients (21-69 years, 21 males) and 99 age- and sex-matched controls (19-65 years, 23 males). We measured parameters of thyroid function, (metabolic) inflammation, gut wall integrity and nutrients influencing thyroid function and/or inflammation.

Most remarkably, CFS patients exhibited similar TSH, but lower FT3 (difference of medians 0.1%), TT4 (11.9%), TT3 (12.5%), %TT3 (4.7%), SPINA-GD (14.4%), SPINA-GT (14.9%), 24-hour urinary iodine (27.6%) and higher %rT3 (13.3%). FT3 below the reference range, consistent with the ‘low T3 syndrome’, was found in 16/98 CFS patients vs. 7/99 controls (OR 2.56; 95% CI=1.00 – 6.54). Most observations persisted in two sensitivity analyses with more stringent cut-off values for BMI, hsCRP and WBC.

We found possible evidence of (chronic) low-grade metabolic inflammation (ferritin and HDL-C). FT3, TT3, TT4 and rT3 correlated positively with hsCRP in CFS patients and all subjects. TT3 and TT4 were positively related to hsCRP in controls. Low circulating T3 and the apparent shift from T3 to rT3 may reflect more severely depressed tissue T3 levels.

The present findings might be in line with recent metabolomic studies pointing at a hypometabolic state. They resemble a mild form of ‘non thyroidal illness syndrome’ and ‘low T3 syndrome’ experienced by a subgroup of hypothyroid patients receiving T4 monotherapy. Our study needs confirmation and extension by others. If confirmed, trials with e.g. T3 and iodide supplements might be indicated.

Source: Begoña Ruiz-Núñez, Rabab Tarasse, Emar Vogelaar, Janneke Dijck-Brouwerand Frits Muskiet. Higher prevalence of ‘low T3 syndrome’ in patients with chronic fatigue syndrome: A case-control study. Front. Endocrinol. | doi: 10.3389/fendo.2018.00097 https://www.frontiersin.org/articles/10.3389/fendo.2018.00097/abstract

Association of chronic fatigue syndrome with premature telomere attrition

Abstract:

Background: Chronic fatigue syndrome (CFS), also known as myalgic encephalomyelitis (ME), is a severely debilitating condition of unknown etiology. The symptoms and risk factors of ME/CFS share features of accelerated aging implicated in several diseases. Using telomere length as a marker, this study was performed to test the hypothesis that ME/CFS is associated with accelerated aging.

Methods: Participant (n = 639) data came from the follow-up time point of the Georgia CFS surveillance study. Using the 1994 CFS Research Case Definition with questionnaire-based subscale thresholds for fatigue, function, and symptoms, participants were classified into four illness groups: CFS if all criteria were met (n = 64), CFS-X if CFS with exclusionary conditions (n = 77), ISF (insufficient symptoms/fatigue) if only some criteria were met regardless of exclusionary conditions (n = 302), and NF (non-fatigued) if no criteria and no exclusionary conditions (n = 196). Relative telomere length (T/S ratio) was measured using DNA from whole blood and real-time PCR. General linear models were used to estimate the association of illness groups or T/S ratio with demographics, biological measures and covariates with significance set at p < 0.05.

Results: The mean T/S ratio differed significantly by illness group (p = 0.0017); the T/S ratios in CFS (0.90 ± 0.03) and ISF (0.94 ± 0.02) were each significantly lower than in NF (1.06 ± 0.04). Differences in T/S ratio by illness groups remained significant after adjustment for covariates of age, sex, body mass index, waist–hip ratio, post-exertional malaise and education attainment. Telomere length was shorter by 635, 254 and 424 base pairs in CFS, CFS-X and ISF, respectively, compared to NF. This shorter telomere length translates to roughly 10.1–20.5, 4.0–8.2 and 6.6–13.7 years of additional aging in CFS, CFS-X and ISF compared to NF respectively. Further, stratified analyses based on age and sex demonstrated that the association of ME/CFS with short telomeres is largely moderated by female subjects < 45 years old.

Conclusions: This study found a significant association of ME/CFS with premature telomere attrition that is largely moderated by female subjects < 45 years old. Our results indicate that ME/CFS could be included in the list of conditions associated with accelerated aging. Further work is needed to evaluate the functional significance of accelerated aging in ME/CFS.

Source: Mangalathu S. RajeevanEmail author, Janna Murray, Lisa Oakley, Jin-Mann S. Lin and Elizabeth R. Unger. Association of chronic fatigue syndrome with premature telomere attrition. Journal of Translational Medicine201816:44© The Author(s) 2018 Received: 23 October 2017 Accepted: 16 February 2018 Published: 27 February 2018 https://doi.org/10.1186/s12967-018-1414-x (Full article)

Cellular bioenergetics is impaired in patients with chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is a highly debilitating disease of unknown aetiology. Abnormalities in bioenergetic function have been cited as one possible cause for CFS. Preliminary studies were performed to investigate cellular bioenergetic abnormalities in CFS patients.

A series of assays were conducted using peripheral blood mononuclear cells (PBMCs) from CFS patients and healthy controls. These experiments investigated cellular patterns in oxidative phosphorylation (OXPHOS) and glycolysis. Results showed consistently lower measures of OXPHOS parameters in PBMCs taken from CFS patients compared with healthy controls. Seven key parameters of OXPHOS were calculated: basal respiration, ATP production, proton leak, maximal respiration, reserve capacity, non-mitochondrial respiration, and coupling efficiency.

While many of the parameters differed between the CFS and control cohorts, maximal respiration was determined to be the key parameter in mitochondrial function to differ between CFS and control PBMCs due to the consistency of its impairment in CFS patients found throughout the study (p≤0.003). The lower maximal respiration in CFS PBMCs suggests that when the cells experience physiological stress they are less able to elevate their respiration rate to compensate for the increase in stress and are unable to fulfil cellular energy demands. The metabolic differences discovered highlight the inability of CFS patient PBMCs to fulfil cellular energetic demands both under basal conditions and when mitochondria are stressed during periods of high metabolic demand.

Source: Cara Tomas, Audrey Brown, Victoria Strassheim, Joanna Elson, Julia Newton, Philip Manning. Cellular bioenergetics is impaired in patients with chronic fatigue syndrome. PLoS One. 2017 Oct 24;12(10):e0186802. doi: 10.1371/journal.pone.0186802. eCollection 2017. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186802 (Full article)

The Neuroinflammatory Etiopathology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating multi-systemic chronic illness of unknown etiology, classified as a neurological disorder by the World Health Organization (WHO). The symptomatology of the condition appears to emanate from a variety of sources of chronic neurological disturbance and associated distortions, and chronicity, in noxious sensory signaling and neuroimmune activation. This article incorporates a summary review and discussion of biomedical research considered relevant to this essential conception perspective. It is intended to provide stakeholders with a concise, integrated outline disease model in order to help demystify this major public health problem. The primary etiopathological factors presented are:

(A) Postural/biomechanical pain signaling, affecting adverse neuroexcitation, in the context of compression, constriction, strain, or damage of vertebral-regional bone and neuromuscular tissues;

(B) Immune mediated inflammatory sequelae, in the context of prolonged immunotropic neurotrophic infection-with lymphotropic/gliotropic/glio-toxic varieties implicated in particular;

(C) A combination of factors A and B. Sustained glial activation under such conditions is associated with oxidative and nitrosative stress, neuroinflammation, and neural sensitivity. These processes collectively enhance the potential for multi-systemic disarray involving endocrine pathway aberration, immune and mitochondrial dysfunction, and neurodegeneration, and tend toward still more intractable synergistic neuro-glial dysfunction (gliopathy), autoimmunity, and central neuronal sensitization.

 

Source: Glassford JA. The Neuroinflammatory Etiopathology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Physiol. 2017 Feb 17;8:88. doi: 10.3389/fphys.2017.00088. eCollection 2017. http://journal.frontiersin.org/article/10.3389/fphys.2017.00088/full (Full article)

 

Characteristic chemical signature for chronic fatigue syndrome identified

Chronic fatigue syndrome (CFS) is a mysterious and maddening condition, with no cure or known cause. But researchers at the University of California San Diego School of Medicine, using a variety of techniques to identify and assess targeted metabolites in blood plasma, have identified a characteristic chemical signature for the debilitating ailment and an unexpected underlying biology: It is similar to the state of dauer, and other hypometabolic syndromes like caloric restriction, diapause and hibernation.

Dauer is the German word for persistence or long-lived. It is a type of stasis in the development in some invertebrates that is prompted by harsh environmental conditions. The findings are published online in the August 29 issue of PNAS.

“CFS is a very challenging disease,” said first author Robert K. Naviaux, MD, PhD, professor of medicine, pediatrics and pathology and director of the Mitochondrial and Metabolic Disease Center at UC San Diego School of Medicine. “It affects multiple systems of the body. Symptoms vary and are common to many other diseases. There is no diagnostic laboratory test. Patients may spend tens of thousands of dollars and years trying to get a correct diagnosis.”

As many as 2.5 million Americans are believed to have CFS. It most often afflicts women in their 30s to 50s, though both genders and all ages can be affected. The primary symptom is severe fatigue lasting at least six months, with corollary symptoms ranging from muscle pain and headaches to sleep and memory problems.

Naviaux and colleagues studied 84 subjects: 45 men and women who met the diagnostic criteria for CFS and 39 matched controls. The researchers targeted 612 metabolites (substances produced by the processes of metabolism) from 63 biochemical pathways in blood plasma. They found that individuals with CFS showed abnormalities in 20 metabolic pathways. Eighty percent of the diagnostic metabolites measured were decreased, consistent with hypometabolic syndrome or reduced metabolism. The diagnostic accuracy rate exceeded 90 percent.

“Despite the heterogeneity of CFS, the diversity of factors that lead to this condition, our findings show that the cellular metabolic response is the same in patients,” said Naviaux. “And interestingly, it’s chemically similar to the dauer state you see in some organisms, which kicks in when environmental stresses trigger a slow-down in metabolism to permit survival under conditions that might otherwise cause cell death. In CFS, this slow-down comes at the cost of long-term pain and disability.”

Naviaux said the findings show that CFS possesses an objectively identifiable chemical signature in both men and women and that targeted metabolomics, which provide direct small molecule information, can provide actionable treatment information. Only 25 percent of the metabolite disturbances found in each person were needed for the diagnosis of CFS. Roughly 75 percent of abnormalities were unique to each individual, which Naviaux said is useful in guiding personalized treatment.

“This work opens a fresh path to both understanding the biology of CFS and, more importantly to patients, a robust, rational way to develop new therapeutics for a disease sorely in need of them.”

The study authors noted additional research using larger groups of participants from diverse geographical areas is needed to validate both the universality and specificity of the findings.

 

Journal Reference: Robert K. Naviaux, Jane C. Naviaux, Kefeng Li, A. Taylor Bright, William A. Alaynick, Lin Wang, Asha Baxter, Neil Nathan, Wayne Anderson, Eric Gordon. Metabolic features of chronic fatigue syndrome. Proceedings of the National Academy of Sciences, 2016; 201607571 DOI: 10.1073/pnas.1607571113

 

Source: University of California – San Diego. “Characteristic chemical signature for chronic fatigue syndrome identified: Discovery, along with revealed underlying biology, could lead to faster, more accurate diagnoses and more effective, personalized therapies.” ScienceDaily. ScienceDaily, 29 August 2016. https://www.sciencedaily.com/releases/2016/08/160829163253.htm

 

Chronic fatigue syndrome is in your gut, not your head

Physicians have been mystified by chronic fatigue syndrome, a condition where normal exertion leads to debilitating fatigue that isn’t alleviated by rest. There are no known triggers, and diagnosis requires lengthy tests administered by an expert.

Now, for the first time, Cornell University researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.

In a study published June 23 in the journal Microbiome, the team describes how they correctly diagnosed myalgic encephalomyeletis/chronic fatigue syndrome (ME/CFS) in 83 percent of patients through stool samples and blood work, offering a noninvasive diagnosis and a step toward understanding the cause of the disease.

“Our work demonstrates that the gut bacterial microbiome in chronic fatigue syndrome patients isn’t normal, perhaps leading to gastrointestinal and inflammatory symptoms in victims of the disease,” said Maureen Hanson, the Liberty Hyde Bailey Professor in the Department of Molecular Biology and Genetics at Cornell and the paper’s senior author. “Furthermore, our detection of a biological abnormality provides further evidence against the ridiculous concept that the disease is psychological in origin.”

“In the future, we could see this technique as a complement to other noninvasive diagnoses, but if we have a better idea of what is going on with these gut microbes and patients, maybe clinicians could consider changing diets, using prebiotics such as dietary fibers or probiotics to help treat the disease,” said Ludovic Giloteaux, a postdoctoral researcher and first author of the study.

In the study, Ithaca campus researchers collaborated with Dr. Susan Levine, an ME/CFS specialist in New York City, who recruited 48 people diagnosed with ME/CFS and 39 healthy controls to provide stool and blood samples.

The researchers sequenced regions of microbial DNA from the stool samples to identify different types of bacteria. Overall, the diversity of types of bacteria was greatly reduced and there were fewer bacterial species known to be anti-inflammatory in ME/CFS patients compared with healthy people, an observation also seen in people with Crohn’s disease and ulcerative colitis.

At the same time, the researchers discovered specific markers of inflammation in the blood, likely due to a leaky gut from intestinal problems that allow bacteria to enter the blood, Giloteaux said.

Bacteria in the blood will trigger an immune response, which could worsen symptoms.

The researchers have no evidence to distinguish whether the altered gut microbiome is a cause or a whether it is a consequence of disease, Giloteaux added.

In the future, the research team will look for evidence of viruses and fungi in the gut, to see whether one of these or an association of these along with bacteria may be causing or contributing to the illness.

 

Journal Reference: Ludovic Giloteaux, Julia K. Goodrich, William A. Walters, Susan M. Levine, Ruth E. Ley, Maureen R. Hanson. Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome, 2016; 4 (1) DOI: 10.1186/s40168-016-0171-4

 

Source: Cornell University. “Chronic fatigue syndrome is in your gut, not your head.” ScienceDaily. ScienceDaily, 27 June 2016. https://www.sciencedaily.com/releases/2016/06/160627160939.htm

 

Further clues in the fight against chronic fatigue syndrome

New findings regarding the pathology of Chronic Fatigue Syndrome (CFS) are bringing Griffith University researchers closer to identifying the cause of this disabling illness.

This is the news from a team at the National Centre for Neuroimmunology and Emerging Diseases at the Menzies Health Institute Queensland.

Professors Marshall-Gradisnik and Don Staines and their research team have identified significant impairments in cellular function of people with CFS.

CFS — sometimes known as ME (myalgic encephalomyelitis) — is a complex illness characterized by impaired memory and concentration, metabolic, cardiac, gut and immune dysfunction and debilitating muscle pain and fatigue on exertion (also known as neuroimmune exhaustion).

It is estimated that the prevalence rate of CFS/ME worldwide is between 1 and 2 per cent.

“While the patho-mechanism of CFS/ME is unknown, these recent findings by NCNED researchers provide further evidence for the pathology of this illness,” says Professor Sonya Marshall-Gradisnik, who speaks as we approach International CFS Awareness Day on Thursday May 12.

Published in the Journal of Translational Medicine, the results report significant differences in intracellular signalling of cells with CFS patients.

“In this group, we see that dysfunctional signalling may contribute to impaired cell activity. These findings are consistent with our previous findings and align with the presentation of symptoms in patients,” says Professor Staines.

The current research findings build upon recent discoveries including novel identification of key genetic changes in cells of the immune system.

The NCNED — internationally recognised for research into CFS/ME — will present a seminar on current research findings on this disease on International CFS/ME Awareness Day, Thursday May 12 at Griffith University, Gold Coast Campus, commencing 1pm, location G17, Lecture theatre 3.

Griffith University will also be illuminating the Griffith Health Centre in blue to further help raise awareness for CFS/ME.

Journal Reference: Teilah Kathryn Huth, Donald Staines, Sonya Marshall-Gradisnik. ERK1/2, MEK1/2 and p38 downstream signalling molecules impaired in CD56dimCD16 and CD56brightCD16dim/− natural killer cells in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis patients. Journal of Translational Medicine, 2016; 14 (1) DOI: 10.1186/s12967-016-0859-z

 

Source: Griffith University. “Further clues in the fight against chronic fatigue syndrome.” ScienceDaily. ScienceDaily, 10 May 2016. https://www.sciencedaily.com/releases/2016/05/160510093906.htm

 

New light shed on cause of chronic fatigue syndrome

New research findings may shed new light on the potential cause of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME).

Researchers from Griffith University’s National Centre for Neuroimmunology and Emerging Diseases (NCNED) — part of the new Menzies Health Institute Queensland — have uncovered significant factors contributing to the pathology of this illness.

The results reveal genetic changes in important receptors associated with immunological and cellular function and contribute to the development of this complex illness.

“These findings have been achieved through a team effort involving researchers, patients, funding bodies, clinicians and the support of Griffith University and the Queensland Government,” say chief investigators Professor Sonya Marshall-Gradisnik and Professor Donald Staines.

Co-researcher and consultant immunologist Professor Pete Smith said that important signalling mechanisms are disrupted as a result of these genetic changes involving the detection and response to threats.

“These are primitive genes that are involved in many cellular signals in the brain, gut, cardiovascular and immune systems, as well as in the mediation of pain.”

These research findings coincide with International Neuroimmune Awareness week commencing Monday 11 May.

The Griffith Health Centre on the university’s Gold Coast campus is being lit up each evening from 10 -12 May to raise awareness of neurological conditions such as CFS/ME as well as other conditions such as Fibromyalgia and Gulf War Syndrome.

“The lighting up of the Griffith Health Centre signifies Griffith’s commitment to the CFS patient community and our team approach to this research,” says Pro-Vice Chancellor (Health) Professor Allan Cripps.

CFS/ME is a highly debilitating disorder characterized by profound fatigue, muscle and joint pain, cerebral symptoms of impaired memory and concentration, impaired cardiovascular function, gut disorder and sensory dysfunction such as noise intolerance and balance disturbance. Many cases can continue for months or years. It is believed to affect around 250,000 Australians.

The research findings are to be presented at an international conference in London later this month.

Journal Reference: Sonya Marshall-Gradisnik, Donald Staines, Pete Smith, Bernd Nilius, Ekua Brenu, Sandra Ramos. Examination of Single Nucleotide Polymorphisms (SNPs) in Transient Receptor Potential (TRP) Ion Channels in Chronic Fatigue Syndrome Patients. Immunology and Immunogenetics Insights, 2015; 1 DOI: 10.4137/III.S25147

 

Source: Griffith University. “New light shed on cause of chronic fatigue syndrome.” ScienceDaily. ScienceDaily, 11 May 2015. https://www.sciencedaily.com/releases/2015/05/150511172755.htm 

 

Chronic fatigue syndrome patients had reduced activity in brain’s ‘reward center’

Chronic fatigue syndrome, a medical disorder characterized by extreme and ongoing fatigue with no other diagnosed cause, remains poorly understood despite decades of scientific study. Although researchers estimate that more than 1 million Americans are affected by this condition, the cause for chronic fatigue syndrome, a definitive way to diagnose it, and even its very existence remain in question. In a new study, researchers have found differing brain responses in people with this condition compared to healthy controls, suggesting an association between a biologic functional response and chronic fatigue syndrome.

The findings show that patients with chronic fatigue syndrome have decreased activation of an area of the brain known as the basal ganglia in response to reward. Additionally, the extent of this lowered activation was associated with each patient’s measured level of fatigue. The basal ganglia are at the base of the brain and are associated with a variety of functions, including motor activity and motivation. Diseases affecting basal ganglia are often associated with fatigue. These results shed more light on this mysterious condition, information that researchers hope may eventually lead to better treatments for chronic fatigue syndrome.

The study was conducted by Elizabeth R. Unger, James F. Jones, and Hao Tian of the Centers for Disease Control and Prevention (CDC), Andrew H. Miller and Daniel F. Drake of Emory University School of Medicine, and Giuseppe Pagnoni of the University of Modena and Reggio Emilia. An abstract of their study entitled, “Decreased Basal Ganglia Activation in Chronic Fatigue Syndrome Subjects is Associated with Increased Fatigue,” will be discussed at the meeting Experimental Biology 2012, being held April 21-25 at the San Diego Convention Center. The abstract is sponsored by the American Society for Investigative Pathology (ASIP), one of six scientific societies sponsoring the conference which last year attracted some 14,000 attendees.

More Fatigue, Less Activation

Dr. Unger says that she and her colleagues became curious about the role of the basal ganglia after previous studies by collaborators at Emory University showed that patients treated with interferon alpha, a common treatment for chronic hepatitis C and several other conditions, often experienced extreme fatigue. Further investigation into this phenomenon showed that basal ganglia activity decreased in patients who received this immune therapy. Since the fatigue induced by interferon alpha shares many characteristics with chronic fatigue syndrome, Unger and her colleagues decided to investigate whether the basal ganglia were also affected in this disorder.

The researchers recruited 18 patients with chronic fatigue syndrome, as well as 41 healthy volunteers with no symptoms of CFS. Each study participant underwent functional magnetic resonance imaging, a brain scan technique that measures activity in various parts of the brain by blood flow, while they played a simple card game meant to stimulate feelings of reward. The participants were each told that they’d win a small amount of money if they correctly guessed whether a preselected card was red or black. After making their choice, they were presented with the card while researchers measured blood flow to the basal ganglia during winning and losing hands.

The researchers showed that patients with chronic fatigue syndrome experienced significantly less change in basal ganglia blood flow between winning and losing than the healthy volunteers. When the researchers looked at scores for the Multidimensional Fatigue Inventory, a survey often used to document fatigue for chronic fatigue syndrome and various other conditions, they also found that the extent of a patient’s fatigue was tightly tied with the change in brain activity between winning and losing. Those with the most fatigue had the smallest change.

Results Suggest Role of Inflammation

Unger notes that the findings add to our understanding of biological factors that may play a role in chronic fatigue syndrome. “Many patients with chronic fatigue syndrome encounter a lot of skepticism about their illness,” she says. “They have difficulty getting their friends, colleagues, coworkers, and even some physicians to understand their illness. These results provide another clue into the biology of chronic fatigue syndrome.”

The study also suggests some areas of further research that could help scientists develop treatments for this condition in the future, she adds. Since the basal ganglia use the chemical dopamine as their major neurotransmitter, dopamine metabolism may play an important role in understanding and changing the course of this illness. Similarly, the difference in basal ganglia activation between the patients and healthy volunteers may be caused by inflammation, a factor now recognized as pivotal in a variety of conditions, ranging from heart disease to cancer.

Estimates from the CDC suggest that annual medical costs associated with chronic fatigue syndrome total about $14 billion in the United States. Annual losses to productivity because of lost work time range between $9 and $37 billion, with costs to individual households ranging between $8,000 and $20,000 per year.

 

Source: Federation of American Societies for Experimental Biology (FASEB). (2012, April 24). Chronic fatigue syndrome patients had reduced activity in brain’s ‘reward center’. ScienceDaily. Retrieved March 4, 2017 from https://www.sciencedaily.com/releases/2012/04/120424142109.htm