Red blood cell deformability is diminished in patients with Chronic Fatigue Syndrome

[Editor’s comment: Conspicuously absent from the reference section in this paper is the pioneering work of L. O. Simpson. In 1989 Dr. Leslie O. Simpson, a New Zealand pathologist, discovered that the blood of people with ME/CFS tends to have a higher proportion of cup-shaped red blood cells. (Simpson, L.O. “Nondiscocyte Erythrocytes in Myalgic Encephalomyelitis.” New Zealand Medical Journal 2(864):126-127,1989.) Cup-shaped cells are more difficult to squeeze through small capillaries than disc-shaped cells, making it harder for blood to oxygenate capillary-dependent tissues. In further investigations, Dr. Simpson also observed similar changes in red blood cell morphology in other diseases. He noted that red blood cell shape can change from minute to minute. A summary of Dr. Simpson’s work on red blood cell morphology in ME/CFS can be found HERE.]

Abstract:

BACKGROUND: Myalgic encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a poorly understood disease. Amongst others symptoms, the disease is associated with profound fatigue, cognitive dysfunction, sleep abnormalities, and other symptoms that are made worse by physical or mental exertion. While the etiology of the disease is still debated, evidence suggests oxidative damage to immune and hematological systems as one of the pathophysiological mechanisms of the disease. Since red blood cells (RBCs) are well-known scavengers of oxidative stress, and are critical in microvascular perfusion and tissue oxygenation, we hypothesized that RBC deformability is adversely affected in ME/CFS.

METHODS: We used a custom microfluidic platform and high-speed microscopy to assess the difference in deformability of RBCs obtained from ME/CFS patients and age-matched healthy controls.

RESULTS AND CONCLUSION: We observed from various measures of deformability that the RBCs isolated from ME/CFS patients were significantly stiffer than those from healthy controls. Our observations suggest that RBC transport through microcapillaries may explain, at least in part, the ME/CFS phenotype, and promises to be a novel first-pass diagnostic test

Source: Saha KA, Schmidt RB, Wilhelmy J, Nguyen V, Abugherir A, Do KJ, Nemat-Gorgani M, Davis WR, Ramasubramanian KA. Red blood cell deformability is diminished in patients with Chronic Fatigue Syndrome.Clin Hemorheol Microcirc. 2018 Dec 28. doi: 10.3233/CH-180469. [Epub ahead of print]  https://content.iospress.com/articles/clinical-hemorheology-and-microcirculation/ch180469 (Full article)

Peak Oxygen Uptake in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: A Meta-Analysis

Abstract:

To evaluate the magnitude of the difference in VO2peak between patients with Chronic Fatigue Syndrome/ Myalgic Encephalomyelitis (CFS/ME) and apparently healthy controls, 7 databases (Cochrane, PubMed, PsycINFO, Web of Knowledge, Embase, Scopus, Medline) were searched for articles published up to March 2018. Search terms included “chronic fatigue syndrom*”AND (“peak” OR “maxim*” OR “max”) AND (“oxygen uptake” OR “oxygen consumption” OR “VO2peak” or “VO2max”.

Eligibility criteria were adults>18 y with clinically diagnosed CFS/ME, with VO2peak measured in a maximal test and compared against an apparently healthy control group. The methodological quality of included studies was assessed using a modified Systematic Appraisal of Quality for Observational Research critical appraisal framework. A random effects meta-analysis was conducted on 32 cross-sectional studies (effects).

Pooled mean VO2peak was 5.2 (95% CI: 3.8-6.6) ml.kg-1min-1 lower in CFS/ME patients vs. healthy controls. Between-study variability (Tau) was 3.4 (1.5-4.5) ml.kg-1min-1 indicating substantial heterogeneity. The 95% prediction interval was -1.9 to 12.2 ml.kg-1min-1. The probability that the effect in a future study would be>the minimum clinically important difference of 1.1 ml.kg-1min-1 (in favour of controls) was 0.88 – likely to be clinically relevant. Synthesis of the available evidence indicates that CFS/ME patients have a substantially reduced VO2peak compared to controls.

Source: Franklin JD, Atkinson 1, Atkinson JM, Batterham AM. Peak Oxygen Uptake in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: A Meta-Analysis. Int J Sports Med. 2018 Dec 17. doi: 10.1055/a-0802-9175. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/30557887

A systematic review of enteric dysbiosis in chronic fatigue syndrome/myalgic encephalomyelitis

Abstract:

BACKGROUND: Chronic fatigue syndrome or myalgic encephalomyelitis (CFS/ME) is an illness characterised by profound and pervasive fatigue in addition to a heterogeneous constellation of symptoms. The aetiology of this condition remains unknown; however, it has been previously suggested that enteric dysbiosis is implicated in the pathogenesis of CFS/ME. This review examines the evidence currently available for the presence of abnormal microbial ecology in CFS/ME in comparison to healthy controls, with one exception being probiotic-supplemented CFS/ME patients, and whether the composition of the microbiome plays a role in symptom causation.

METHODS: EMBASE, Medline (via EBSCOhost), Pubmed and Scopus were systematically searched from 1994 to March 2018. All studies that investigated the gut microbiome composition of CFS/ME patients were initially included prior to the application of specific exclusion criteria. The association between these findings and patient-centred outcomes (fatigue, quality of life, gastrointestinal symptoms, psychological wellbeing) are also reported.

RESULTS: Seven studies that met the inclusion criteria were included in the review. The microbiome composition of CFS/ME patients was compared with healthy controls, with the exception of one study that compared to probiotic-supplemented CFS/ME patients. Differences were reported in each study; however, only three were considered statistically significant, and the findings across all studies were inconsistent. The quality of the studies included in this review scored between poor (< 54%), fair (54-72%) and good (94-100%) using the Downs and Black checklist.

CONCLUSIONS: There is currently insufficient evidence for enteric dysbiosis playing a significant role in the pathomechanism of CFS/ME. Recommendations for future research in this field include the use of consistent criteria for the diagnosis of CFS/ME, reduction of confounding variables by controlling factors that influence microbiome composition prior to sample collection and including more severe cases of CFS/ME.

Source: Du Preez S, Corbitt M, Cabanas H, Eaton N, Staines D, Marshall-Gradisnik S. A systematic review of enteric dysbiosis in chronic fatigue syndrome/myalgic encephalomyelitis. Syst Rev. 2018 Dec 20;7(1):241. doi: 10.1186/s13643-018-0909-0. https://systematicreviewsjournal.biomedcentral.com/articles/10.1186/s13643-018-0909-0 (Full article)

The UK ME/CFS Biobank: A Disease-Specific Biobank for Advancing Clinical Research Into Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling disease characterized by unexplained incapacitating fatigue, accompanied by variable multi-systemic symptoms. ME/CFS causes a significant personal and public health burden, and urgently requires the coordination of research efforts to investigate its etiology and pathophysiology and to develop and validate sensitive and specific biomarkers to confirm diagnosis.

This narrative paper describes how people with ME/CFS, together with a multidisciplinary team of researchers, have established the UK ME/CFS Biobank (UKMEB), a unique research infrastructure specifically designed to expedite biomedical research into ME/CFS. We describe the journey that led to its conceptualization and operation, and how the resource has served as a model disease-specific biobank, aggregating human biospecimens alongside comprehensive health information on participants.

The UKMEB currently has data and samples from 600 donors including people with ME/CFS and a comparison group with multiple sclerosis and healthy controls. A longitudinal sub-cohort has been established of participants having follow-up assessments at multiple time-points. As an open resource for quality and ethical research into ME/CFS, biological samples and data have not only been analyzed within our research team but have also been shared with researchers across Europe, America and the Middle East. We continue to encourage researchers from academic and commercial sectors to access the UKMEB. Major steps have been taken and challenges remain; these include sustainability and expansion, and harmonization of processes to facilitate integration with other bioresources and databanks internationally.

Source: Lacerda EM, Mudie K, Kingdon CC, Butterworth JD, O’Boyle S, Nacul L. The UK ME/CFS Biobank: A Disease-Specific Biobank for Advancing Clinical Research Into Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Neurol. 2018 Dec 4;9:1026. doi: 10.3389/fneur.2018.01026.
eCollection 2018. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288193/ (Full article)

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in the Era of the Human Microbiome: Persistent Pathogens Drive Chronic Symptoms by Interfering With Host Metabolism, Gene Expression, and Immunity

Abstract:

The illness ME/CFS has been repeatedly tied to infectious agents such as Epstein Barr Virus. Expanding research on the human microbiome now allows ME/CFS-associated pathogens to be studied as interacting members of human microbiome communities. Humans harbor these vast ecosystems of bacteria, viruses and fungi in nearly all tissue and blood. Most well-studied inflammatory conditions are tied to dysbiosis or imbalance of the human microbiome. While gut microbiome dysbiosis has been identified in ME/CFS, microbes and viruses outside the gut can also contribute to the illness.

Pathobionts, and their associated proteins/metabolites, often control human metabolism and gene expression in a manner that pushes the body toward a state of illness. Intracellular pathogens, including many associated with ME/CFS, drive microbiome dysbiosis by directly interfering with human transcription, translation, and DNA repair processes. Molecular mimicry between host and pathogen proteins/metabolites further complicates this interference. Other human pathogens disable mitochondria or dysregulate host nervous system signaling. Antibodies and/or clonal T cells identified in patients with ME/CFS are likely activated in response to these persistent microbiome pathogens.

Different human pathogens have evolved similar survival mechanisms to disable the host immune response and host metabolic pathways. The metabolic dysfunction driven by these organisms can result in similar clusters of inflammatory symptoms. ME/CFS may be driven by this pathogen-induced dysfunction, with the nature of dysbiosis and symptom presentation varying based on a patient’s unique infectious and environmental history. Under such conditions, patients would benefit from treatments that support the human immune system in an effort to reverse the infectious disease process.

Source: Proal A, Marshall T. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in the Era of the Human Microbiome: Persistent Pathogens Drive Chronic Symptoms by Interfering With Host Metabolism, Gene Expression, and Immunity. Front Pediatr. 2018 Dec 4;6:373. doi: 10.3389/fped.2018.00373. eCollection 2018. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288442/ (Full article)

A compromised paraventricular nucleus within a dysfunctional hypothalamus: A novel neuroinflammatory paradigm for ME/CFS

[Editor’s comment: While nicely explored in this article, the idea that the limbic system is the main driver behind ME/CFS symptoms is hardly new. Jay Goldstein in his 286-page book, Chronic Fatigue Syndromes: The Limbic Hypothesis (June 1993), examines the important role of the limbic system, and in particular the hypothalamus, in ME/CFS pathophysiology. The authors of this article fail to give him a mention.]

Abstract:

A neuroinflammatory paradigm is presented to help explain the pathophysiology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The hypothalamic paraventricular nucleus (PVN) is responsible for absorbing and processing multiple, incoming and convergent ‘stress’ signals, and if this cluster of neurons were affected (by neuroinflammation), the ongoing hypersensitivity of ME/CFS patients to a wide range of ‘stressors’ could be explained. Neuroinflammation that was chronic and fluctuating, as ‘inflammatory-marker’ studies support, could reflect a dynamic change in the hypothalamic PVN’s threshold for managing incoming ‘stress’ signals.

This may not only be a mechanism underpinning the characteristic feature of ME/CFS, post-exertional malaise, and its associated debilitating relapses, but could also be responsible for mediating the long-term perpetuation of the disease. Triggers (sustained physiological ‘stressors’) of ME/CFS, such as a particular viral infection, toxin exposure, or a traumatic event, could also target the hypothalamic PVN, a potentially vulnerable site in the brains of ME/CFS susceptible people, and disruption of its complex neural circuitry could account for the onset of ME/CFS. In common with the different ‘endogenous factors’ identified in the early ‘neuroinflammatory’ stages of the ‘neurodegenerative’ diseases, an as yet, unidentified factor within the brains and central nervous system (CNS) of ME/CFS patients might induce both an initial and then sustained ‘neuroinflammatory’ response by its ‘innate immune system’.

Positron emission tomography/magnetic resonance imaging has reinforced evidence of glial cell activation centred on the brain’s limbic system of ME/CFS patients. Neuroinflammation causing dysfunction of the limbic system and its hypothalamus together with a consequently disrupted autonomic nervous system could account for the diverse range of symptoms in ME/CFS relating, in particular to fatigue, mood, cognitive function, sleep, thermostatic control, gastrointestinal disturbance, and hypotension.

Source: Angus Mackay, Warren P Tate. A compromised paraventricular nucleus within a dysfunctional hypothalamus: A novel neuroinflammatory paradigm for ME/CFS. International Journal of Immunopathology and Pharmacology. First Published December 6, 2018. https://doi.org/10.1177/2058738418812342  https://journals.sagepub.com/doi/full/10.1177/2058738418812342 (Full article)

Evaluation of four clinical laboratory parameters for the diagnosis of myalgic encephalomyelitis

Abstract:

Background: Myalgic encephalomyelitis (ME) is a complex and debilitating disease that often initially presents with flu-like symptoms, accompanied by incapacitating fatigue. Currently, there are no objective biomarkers or laboratory tests that can be used to unequivocally diagnosis ME; therefore, a diagnosis is made when a patient meets series of a costly and subjective inclusion and exclusion criteria. The purpose of the present study was to evaluate the utility of four clinical parameters in diagnosing ME.

Methods: In the present study, we utilized logistic regression and classification and regression tree analysis to conduct a retrospective investigation of four clinical laboratory in 140 ME cases and 140 healthy controls.

Results: Correlations between the covariates ranged between [− 0.26, 0.61]. The best model included the serum levels of the soluble form of CD14 (sCD14), serum levels of prostaglandin E2 (PGE2), and serum levels of interleukin 8, with coefficients 0.002, 0.249, and 0.005, respectively, and p-values of 3 × 10−7, 1 × 10−5, and 3 × 10−3, respectively.

Conclusions: Our findings show that these parameters may help physicians in their diagnosis of ME and may additionally shed light on the pathophysiology of this disease.

© The Author(s) 2018

Source: Kenny L. De Meirleir, Tatjana Mijatovic, Krishnamurthy Subramanian, Karen A. Schlauch and Vincent C. Lombardi. Evaluation of four clinical laboratory parameters for the diagnosis of myalgic encephalomyelitis. Journal of Translational Medicine201816:322
https://doi.org/10.1186/s12967-018-1696-z Received: 1 September 2018, Accepted: 14 November 2018, Published: 21 November 2018 https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-018-1696-z (Full article)

Chronic Fatigue Syndrome: From Chronic Fatigue to More Specific Syndromes

Abstract:

In the last decade, a group of chronic disorders associated with fatigue (CDAF) emerged as the leading cause of chronic fatigue, chronic pain, and functional impairment, all of which have been often labeled in clinical practice as chronic fatigue syndrome (CFS) or fibromyalgia. While these chronic disorders arise from various pathophysiologic mechanisms, a shared autoimmune or immune-mediated etiology could shift the focus from symptomatic treatment of fatigue and pain to targeted immunomodulatory and biological therapy.

A clinical paradigm shift is necessary to reevaluate CFS and fibromyalgia diagnoses and its relationship to the CDAF entities, which would ultimately lead to a change in diagnostic and therapeutic algorithm for patients with chronic fatigue and chronic pain. Rather than uniformly apply the diagnoses of CFS or fibromyalgia to any patient presenting with unexplained chronic fatigue or chronic pain, it may be more beneficial and therapeutically effective to stratify these patients into more specific diagnoses in the CDAF group.

Source: Blitshteyn S, Chopra P. Chronic Fatigue Syndrome: From Chronic Fatigue to More Specific Syndromes. Eur Neurol. 2018 Oct 4;80(1-2):73-77. doi: 10.1159/000493531. [Epub ahead of print]  https://www.ncbi.nlm.nih.gov/pubmed/30286454

Near-Infrared Spectroscopy Screening to Allow Detection of Pathogenic Mitochondrial DNA Variants in Individuals with Unexplained Abnormal Fatigue: A Preliminary Study

Abstract:

Unexplained abnormal fatigue is characterized by chronic fatigue persisting for at least six months and not sufficiently explained by any recognized medical condition. In this pilot study, twelve individuals with abnormal fatigue remaining unexplained after thorough screening were investigated using a near-infrared (NIR) spectroscopy handgrip test.

Four of them were found to have an abnormal oxygen extraction pattern similar to participants with documented mitochondrial myopathy. In three of the four individuals, diverse mitochondrial abnormalities were documented by spectrophotometric, immunocytological, fluorescent, and morphological analyses performed in skeletal muscle and in cultured skin fibroblasts. Three of the four participants with decreased muscular oxygen extraction were each shown to harbor a different homoplasmic pathogenic mitochondrial DNA point mutation (m.961T > C, m.1555A > G, m.14484T > C). In the fourth participant, the presence of multiple large mitochondrial DNA deletions was suspected in muscle tissue. In contrast, none of the eight abnormally fatigued participants with normal NIR spectroscopy results harbored either a pathogenic mitochondrial DNA point mutation or large deletions ( P < 0.001).

This pilot study shows that NIR spectroscopy may serve as a noninvasive screening tool to delineate a subgroup (of participants) with mitochondrial dysfunction among the large group of individuals with unexplained abnormal fatigue.

Source: Celie BM, Mariman A, Boone J, Delesie L, Tobback E, Seneca S, De Paepe B, Vogelaers D, Van Coster RN, Bourgois JG. Near-Infrared Spectroscopy Screening to Allow Detection of Pathogenic Mitochondrial DNA Variants in Individuals with Unexplained Abnormal Fatigue: A Preliminary Study. Appl Spectrosc. 2018 May;72(5):715-724. doi: 10.1177/0003702818756647. Epub 2018 Feb 13.  https://www.ncbi.nlm.nih.gov/pubmed/29336589

A Brief Questionnaire to Assess Post-Exertional Malaise

Abstract:

Post-exertional malaise (PEM) is a key symptom of myalgic encephalomyelitis (ME) and chronic fatigue syndrome (CFS). Currently, five PEM-items from the DePaul Symptom Questionnaire (DSQ) were recommended as a first step in measuring this symptom for patients with ME and CFS by the National Institutes of Health/Centers for Disease Control and Prevention (NIH/CDC) Common Data Elements’ (CDE) working group.

The second step in this process, as recommended by the NIH/CDC CDE working group, involves assembling information from various sources to confirm the presence of PEM. There have not been any efforts, to date, to standardize this second-step process in the assessment of PEM.

The current study examined whether five supplementary items on the DSQ could be used to operationalize the second step of the recommendations made by the NIH/CDC CDE working group. The five supplementary DSQ PEM duration items correctly categorized patients with ME or CFS 81.7% of the time, while incorrectly categorizing multiple sclerosis (MS) and post-polio syndrome (PPS) as ME or CFS only 16.6% of the time. The findings suggested that a PEM second-step process could be operationalized using supplementary DSQ items.

Source: Cotler J, Holtzman C, Dudun C, Jason LA. A Brief Questionnaire to Assess Post-Exertional Malaise. Diagnostics (Basel). 2018 Sep 11;8(3). pii: E66. doi: 10.3390/diagnostics8030066.