Physiological assessment of orthostatic intolerance in chronic fatigue syndrome

Abstract:

Background: Orthostatic intolerance-OI is common in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-ME/CFS. We used a 10-min passive vertical lean test as orthostatic challenge-OC and measured changes in vitals and end tidal CO2 (eTCO2). An abnormal physiologic response to OC was identified in 60% of the 63 patients evaluated from one to three times over several years. Hypocapnia, either resting or induced by OC, was the most frequent abnormality, followed by postural orthostatic tachycardia.

Objective: Evaluate the physiologic response of patients with ME/CFS to a standardized OC.

Design: Respiratory and heart rate, blood pressure and eTCO2 were recorded twice at the end of 10-min supine rest and then every minute during the 10-min lean. Hypocapnia was eTCO2 ≤ 32 mmHg. Orthostatic tachycardia was heart rate increase ≥ 30 beats per minute compared with resting or ≥ 120 BPM. Orthostatic hypotension was decreased systolic pressure ≥ 20 mmHg from baseline. Tachypnea was respiratory rate of ≥ 20 breaths per minute-either supine or leaning. Questionnaire data on symptom severity, quality of life and mood were collected at visit #2.

Patients: 63 consecutive patients fulfilling the 1994 case definition for CFS underwent lean testing at first visit and then annually at visit 2 (n = 48) and 3 (n = 29).

Measures: Supine hypocapnia; orthostatic tachycardia, hypocapnia or hypotension.

Results: The majority of ME/CFS patients (60.3%, 38/63) had an abnormality detected during a lean test at any visit (51%, 50% and 45% at visits 1, 2 and 3, respectively). Hypocapnia at rest or induced by OC was more common and more likely to persist than postural orthostatic tachycardia. Anxiety scores did not differ between those with and without hypocapnia.

Conclusions: The 10-min lean test is useful in evaluation of OI in patients with ME/CFS. The most frequent abnormality, hypocapnia, would be missed without capnography.

Source: Natelson BH, Lin JS, Blate M, Khan S, Chen Y, Unger ER. Physiological assessment of orthostatic intolerance in chronic fatigue syndrome. J Transl Med. 2022 Feb 16;20(1):95. doi: 10.1186/s12967-022-03289-8. PMID: 35172863. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-022-03289-8 (Full study)

Role of Gut Microbiota and Probiotic in Chronic Fatigue Syndrome

Abstract:

Chronic fatigue syndrome (CFS) is a combination of complex illness characterized by tiredness or intense fatigue that may worsen with too much exertion. Among the wide range of neuropsychological symptoms, 97% CFS patients have been reported with neuronal disorders such as headaches and symptoms in the emotional realm.

Patients with CFS also show noticeable alterations in microflora, lowering level of  Lactobacilli and Bifidobacterium.

Recent researches explain that probiotics in the gastrointestinal tract (GIT) can greatly influence the neuronal pathways and central nervous system (CNS) to modulate behavior.

Various studies expressed the benefit of probiotic therapy in normalizing fatigue patients and also restored mitochondrial electron transport function in patients with CFS.

In this chapter, we provided a historical skeleton, bidirectional communication pathophysiology, selection criteria of probiotics, CFS treatment, and clinical implications of gut–brain connections. In summary, various aspects concerning the potential and safety of probiotics in the management of chronic fatigue syndrome are discussed in this chapter.

Source: Sharma A., Wakode S., Sharma S., Fayaz F. (2022) Role of Gut Microbiota and Probiotic in Chronic Fatigue Syndrome. In: Kaur I.P., Deol P.K., Sandhu S.K. (eds) Probiotic Research in Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-16-6760-2_9 

Circadian rhythm disruption in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Implications for the post-acute sequelae of COVID-19

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a common and disabling disorder primarily characterized by persistent fatigue and exercise intolerance, with associated sleep disturbances, autonomic dysfunction, and cognitive problems. The causes of ME/CFS are not well understood but may coincide with immune and inflammatory responses following viral infections. During the current SARS-CoV2 coronavirus pandemic, ME/CFS has been increasingly reported to overlap with persistent “long COVID” symptoms, also called the post-acute sequelae of COVID-19 (PASC).

Given the prominence of activity and sleep problems in ME/CFS, circadian rhythm disruption has been examined as a contributing factor in ME/CFS. While these studies of circadian rhythms have been pursued for decades, evidence linking circadian rhythms to ME/CFS remains inconclusive. A major limitation of older chronobiology studies of ME/CFS was the unavailability of modern molecular methods to study circadian rhythms and incomplete understanding of circadian rhythms outside the brain in peripheral organ systems. Major methodological and conceptual advancements in chronobiology have since been made.

Over the same time, biomarker research in ME/CFS has progressed. Together, these new developments may justify renewed interest in circadian rhythm research in ME/CFS. Presently, we review ME/CFS from the perspective of circadian rhythms, covering both older and newer studies that make use of modern molecular methods. We focus on transforming growth factor beta (TGFB), a cytokine that has been previously associated with ME/CFS and has an important role in circadian rhythms, especially in peripheral cells.

We propose that disrupted TGFB signaling in ME/CFS may play a role in disrupting physiological rhythms in sleep, activity, and cognition, leading to the insomnia, energy disturbances, cognition problems, depression, and autonomic dysfunction associated with ME/CFS. Since SARS-like coronavirus infections cause persistent changes in TGFB and previous coronavirus outbreaks have caused ME/CFS-like syndromes, chronobiological considerations may have immediate implications for understanding ME/CFS in the context of the COVID-19 pandemic and possibly suggest new avenues for therapeutic interventions.

Source: Michael J. McCarthy. Circadian rhythm disruption in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Implications for the post-acute sequelae of COVID-19. Brain, Behavior, & Immunity – Health, Volume 20, 2022, 100412, ISSN 2666-3546, https://doi.org/10.1016/j.bbih.2022.100412. (Full text)

Decreased NO production in endothelial cells exposed to plasma from ME/CFS patients

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease characterized by severe and persistent fatigue. Along with clinical studies showing endothelial dysfunction (ED) in a subset of ME/CFS patients, we have recently reported altered ED-related microRNAs in plasma from affected individuals. Inadequate nitric oxide (NO), mainly produced by the endothelial isoform of nitric oxide synthase (eNOS) in endothelial cells (ECs), is a major cause of ED. In this study, we hypothesized that plasma from that cohort of ME/CFS patients induces eNOS-related ED in vitro.

To test this, we cultured human umbilical vein endothelial cells (HUVECs) in the presence of either plasma from ME/CFS patients (ME/CFS-plasma, n = 11) or healthy controls (HC-plasma, n = 12). Then, we measured the NO production in the absence or presence of tyrosine kinase and G protein-coupled receptors agonists (TKRs and GPCRs, respectively), well-known to activate eNOS in ECs.

Our data show that HUVECs incubated with ME/CFS-plasma produced less NO either in the absence or presence of eNOS activators compared to ones in presence of HC-plasma. Also, the NO production elicited by bradykinin, histamine, and acetylcholine (GPCRs agonists) was more affected than the one triggered by insulin (TKR agonist). Finally, inhibitory eNOS phosphorylation at Thr495 was higher in HUVECs treated with ME/CFS-plasma compared to the same treatment with HC-plasma. In conclusion, this study in vitro shows a decreased NO production in HUVECs exposed to plasma from ME/CFS patients, suggesting an unreported role of eNOS in the pathophysiology of this disease

Source: Bertinat R, Villalobos-Labra R, Hofmann L, Blauensteiner J, Sepúlveda N, Westermeier F. Decreased NO production in endothelial cells exposed to plasma from ME/CFS patients. Vascul Pharmacol. 2022 Jan 21:106953. doi: 10.1016/j.vph.2022.106953. Epub ahead of print. PMID: 35074481. https://pubmed.ncbi.nlm.nih.gov/35074481/

Letter: Could endothelial dysfunction and vascular damage contribute to pain, inflammation and post-exertional malaise in individuals with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)?

To the Editor,

In their hypothesis paper, Wirth, Scheibenbogen, and Paul describe how endothelial dysfunction could produce a wide range of neurological symptoms in people with ME/CFS [1]. As they and others work to refine their understanding of ME/CFS and the related Long COVID syndrome, I would encourage consideration of the possibility that endothelial dysfunction and vascular damage could also explain other symptoms, including widespread pain and inflammation and post-exertional malaise.

For the past four years, my wife and I have been caregivers for our teenage daughter, who has ME/CFS, hypermobile Ehlers-Danlos syndrome, craniocervical instability, Chiari malformation and several other comorbid conditions. Through observation and trial and error, I have developed a number of hypotheses on these matters that I offer here in the hope they might prompt formal research into how to effectively treat these conditions [2].

Widespread pain and inflammation

Discussion of endothelial dysfunction and vascular damage in ME/CFS and Long COVID generally focuses on how leakages from dysfunctional blood vessels lead to reduced blood flow, which has many consequences, including reduced oxygenation of muscles and reduced cerebral brain flow. As researchers study this phenomenon, I would encourage consideration of the additional possibility that the leaking fluid causes independent damage. Lipedema researchers have found that leakages from microangiopathic blood vessels cause an excess of interstitial fluid that stimulates the formation of subcutaneous adipose tissue [3], which generates hypoxic conditions and becomes fibrotic, contributing to pain and inflammation [4].

I hypothesize that a similar process happens when fluid leaks from faulty blood vessels in ME/CFS, possibly exacerbated by endothelial dysfunction in lymphatic vessels that inhibit the fluid’s removal, causing widespread pain and inflammation. This mechanism appears most pronounced among people with hypermobility or other connective tissue disorders, a common trait among people with both ME/CFS and lipedema.

My daughter experiences pain from fibrotic adipose tissue as well as what appears to be nerve compression from accumulated interstitial / lymphatic fluid. Manual lymphatic drainage, the squeezing of affected tissue, and the manual break-up of fibrotic adipose tissue have helped to ameliorate these symptoms.

In my daughter, I have also observed impaired drainage of fluid from the glymphatic system, both at the cribriform plate and down her spine. Could this be related to damaged lymphatic vessels or blockages from fibrotic adipose tissue?

Post-exertional malaise

Like many people with moderate or severe ME/CFS, my daughter struggles to recover from even small amounts of physical exertion. In addition to mitigating her pain, manual lymphatic drainage and the squeezing of affected tissue greatly accelerates this recovery process. We have observed a direct dose–response relationship: the more exercise, the more fluid is present in her tissues, and the more manual draining / squeezing is necessary for her to recover.

Based on this experience, I hypothesize that excess interstitial fluid resulting from dysfunctional blood and lymphatic vessels contributes to the experience of post-exertional malaise, with fluid literally drowning affected tissue, leading to hypoxic conditions and inflammation. Possible explanations for the increased interstitial fluid are increases in blood pressure during physical exertion, hypermobile joints going out of place, prompting localized increases in interstitial fluid, and increases in cortisol that generate an increase in fluid and blood volume. Increases in fluid leakage due to elevated cortisol levels may also explain why some people with ME/CFS feel worse when stressed or anxious. The role of cortisol (or another mediator with fluid retaining properties) may explain why cognitive exertion can also generate post-exertional malaise. When present, elevated estrogen levels may exacerbate leakage by increasing fluid volume.

I am not sure why there is typically a delay between physical exertion and the experience of the most acute symptoms of post-exertional malaise. One possibility is that it takes time for the tissue inundated with fluid to feel the full effects of the hypoxic conditions. Another possibility is that a biphasic reaction triggered during physical exertion leads to the release of a mediator that causes heightened endothelial dysfunction and fluid release.

Further research is needed into the causes of endothelial dysfunction and damage (in addition to initial infection and inflammatory overreaction, consider major “crashes,” mast cell activations, surgeries and microclots as additional contributors) and appropriate treatment.

References

1. Wirth KJ, Scheibenbogen C, Paul F. An attempt to explain the neurological symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Transl Med. 2021;19:471. https://doi.org/10.1186/s12967-021-03143-3.

Article PubMed PubMed Central Google Scholar

2. For background, see Lubell, J. To speed progress in treating chronic conditions, engage patients and caregivers as research partners. 2021 Sept.20 In: BMJ Opinion. https://blogs.bmj.com/bmj/2021/09/20/to-speed-progress-in-treating-chronic-conditions-engage-patients-and-caregivers-as-research-partners/

3. Allen M, Schwartz M, Herbst KL. Interstitial Fluid in Lipedema and Control Skin. Womens Health Rep (New Rochelle). 2020;1(1):480–7. https://doi.org/10.1089/whr.2020.0086.PMID:33786515;PMCID:PMC7784769.

Article Google Scholar

4. Herbst KL. Subcutaneous Adipose Tissue Diseases: Dercum Disease, Lipedema, Familial Multiple Lipomatosis, and Madelung Disease. [Updated 2019 Dec 14]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. South Dartmouth (MA).

Source: Lubell J. Letter: Could endothelial dysfunction and vascular damage contribute to pain, inflammation and post-exertional malaise in individuals with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)? J Transl Med. 2022 Jan 24;20(1):40. doi: 10.1186/s12967-022-03244-7. PMID: 35073915. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-022-03244-7

Psychogenic Pseudosyncope: Real or Imaginary? Results from a Case-Control Study in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Patients

Abstract:

Background and objectives: Orthostatic intolerance (OI) is a clinical condition in which symptoms worsen upon assuming and maintaining upright posture and are ameliorated by recumbency. OI has a high prevalence in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Exact numbers on syncopal spells especially if they are on a weekly or even daily basis are not described. Although not a frequent phenomenon, this symptomatology is of very high burden to the patient if present. To explore whether patients with very frequent (pre)syncope spells diagnosed elsewhere with conversion or psychogenic pseudosyncope (PPS) might have another explanation of their fainting spells than behavioral psychiatric disorders, we performed a case-control study comparing ME/CFS patients with and without PPS spells.

Methods and results: We performed a case-control study in 30 ME/CFS patients diagnosed elsewhere with PPS and compared them with 30 control ME/CFS patients without syncopal spells. Cases were gender, age and ME/CFS disease duration matched. Each underwent a tilt test with extracranial Doppler measurements for cerebral blood flow (CBF). ME/CFS cases with PPS had a significant larger CBF reduction at end tilt than controls: 39 (6)% vs. 25 (4)%; (p < 0.0001). Cases had more severe disease compared with controls (chi-square p < 0.01 and had a p = 0.01) for more postural orthostatic tachycardia syndrome in cases compared with controls. PETCO2 end-tilt differed also, but the magnitude of difference was smaller than compared with the CBF reduction: there were no differences in heart rate and blood pressure at either end-tilt testing period. Compared with the test with the stockings off, the mean percentage reduction in cardiac output during the test with compression stockings on was lower, 25 (5) mmHg versus 29 (4) mmHg (p < 0.005).

Conclusions: This study demonstrates that in ME/CFS patients suspected of having PPS, or conversion, CBF measurements end-tilt show a large decline compared with a control group of ME/CFS patients. Therefore, hypoperfusion offers an explanation of the orthostatic intolerance and syncopal spells in these patients, where it is clear that origin might not be behavioral or psychogenic, but have a clear somatic pathophysiologic background.

Source: van Campen CLMC, Visser FC. Psychogenic Pseudosyncope: Real or Imaginary? Results from a Case-Control Study in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Patients. Medicina (Kaunas). 2022 Jan 9;58(1):98. doi: 10.3390/medicina58010098. PMID: 35056406. https://pubmed.ncbi.nlm.nih.gov/35056406/

The Gut Microbiome in Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS)

Abstract:

Myalgic encephalomyelitis (ME) or Chronic Fatigue Syndrome (CFS) is a neglected, debilitating multi-systemic disease without diagnostic marker or therapy. Despite evidence for neurological, immunological, infectious, muscular and endocrine pathophysiological abnormalities, the etiology and a clear pathophysiology remains unclear. The gut microbiome gained much attention in the last decade with manifold implications in health and disease. Here we review the current state of knowledge on the interplay between ME/CFS and the microbiome, to identify potential diagnostic or interventional approaches, and propose areas where further research is needed.

We iteratively selected and elaborated on key theories about a correlation between microbiome state and ME/CFS pathology, developing further hypotheses. Based on the literature we hypothesize that antibiotic use throughout life favours an intestinal microbiota composition which might be a risk factor for ME/CFS. Main proposed pathomechanisms include gut dysbiosis, altered gut-brain axis activity, increased gut permeability with concomitant bacterial translocation and reduced levels of short-chain-fatty acids, D-lactic acidosis, an abnormal tryptophan metabolism and low activity of the kynurenine pathway. We review options for microbiome manipulation in ME/CFS patients including probiotic and dietary interventions as well as fecal microbiota transplantations. Beyond increasing gut permeability and bacterial translocation, specific dysbiosis may modify fermentation products, affecting peripheral mitochondria. Considering the gut-brain axis we strongly suspect that the microbiome may contribute to neurocognitive impairments of ME/CFS patients.

Further larger studies are needed, above all to clarify whether D-lactic acidosis and early-life antibiotic use may be part of ME/CFS etiology and what role changes in the tryptophan metabolism might play. An association between the gut microbiome and the disease ME/CFS is plausible. As causality remains unclear, we recommend longitudinal studies. Activity levels, bedridden hours and disease progression should be compared to antibiotic exposure, drug intakes and alterations in the composition of the microbiota. The therapeutic potential of fecal microbiota transfer and of targeted dietary interventions should be systematically evaluated.

Source: König RS, Albrich WC, Kahlert CR, Bahr LS, Löber U, Vernazza P, Scheibenbogen C, Forslund SK. The Gut Microbiome in Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Front Immunol. 2022 Jan 3;12:628741. doi: 10.3389/fimmu.2021.628741. PMID: 35046929; PMCID: PMC8761622. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761622/ (Full text)

 

Evidence for Peroxisomal Dysfunction and Dysregulation of the CDP-Choline Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease that is characterized by unexplained physical fatigue unrelieved by rest. Symptoms also include cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. A syndrome clinically similar to ME/CFS has been reported following well-documented infections with the coronaviruses SARS-CoV and MERS-CoV. At least 10% of COVID-19 survivors develop post acute sequelae of SARS-CoV-2 infection (PASC). Although many individuals with PASC have evidence of structural organ damage, a subset have symptoms consistent with ME/CFS including fatigue, post exertional malaise, cognitive dysfunction, gastrointestinal disturbances, and postural orthostatic intolerance. These common features in ME/CFS and PASC suggest that insights into the pathogenesis of either may enrich our understanding of both syndromes, and could expedite the development of strategies for identifying those at risk and interventions that prevent or mitigate disease.

Methods: Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of 888 metabolic analytes in plasma samples of 106 ME/CFS cases and 91 frequency-matched healthy controls.

Results: In ME/CFS cases, regression, Bayesian and enrichment analyses revealed evidence of peroxisomal dysfunction with decreased levels of plasmalogens. Other findings included decreased levels of several membrane lipids, including phosphatidylcholines and sphingomyelins, that may indicate dysregulation of the cytidine-5’-diphosphocholine pathway. Enrichment analyses revealed decreased levels of choline, ceramides and carnitines, and increased levels of long chain triglycerides (TG) and hydroxy-eicosapentaenoic acid. Elevated levels of dicarboxylic acids were consistent with abnormalities in the tricarboxylic acid cycle. Using machine learning algorithms with selected metabolites as predictors, we were able to differentiate female ME/CFS cases from female controls (highest AUC=0.794) and ME/CFS cases without self-reported irritable bowel syndrome (sr-IBS) from controls without sr-IBS (highest AUC=0.873).

Conclusion: Our findings are consistent with earlier ME/CFS work indicating compromised energy metabolism and redox imbalance, and highlight new abnormalities that may provide insights into the pathogenesis of ME/CFS.

One sentence summary: Plasma levels of plasmalogens are decreased in patients with myalgic encephalomyelitis/chronic fatigue syndrome suggesting peroxisome dysfunction.

Source: Che X, Brydges CR, Yu Y, Price A, Joshi S, Roy A, Lee B, Barupal DK, Cheng A, Palmer DM, Levine S, Peterson DL, Vernon SD, Bateman L, Hornig M, Montoya JG, Komaroff AL, Fiehn O, Lipkin WI. Evidence for Peroxisomal Dysfunction and Dysregulation of the CDP-Choline Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. medRxiv [Preprint]. 2022 Jan 11:2021.06.14.21258895. doi: 10.1101/2021.06.14.21258895. PMID: 35043127; PMCID: PMC8764736. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764736/ (Full text)

Lessons From Heat Stroke for Understanding Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Introduction:

We here provide an overview of the pathophysiological mechanisms during heat stroke and describe similar mechanisms found in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Both conditions are characterized by disturbed homeostasis in which inflammatory pathways play a central role. Splanchnic vasoconstriction, increased gut permeability, gut-related endotoxemia, systemic inflammatory response, central nervous system dysfunction, blood coagulation disorder, endothelial-cell injury, and mitochondrial dysfunction underlie heat stroke. These mechanisms have also been documented in ME/CFS.

Moreover, initial transcriptomic studies suggest that similar gene expressions are altered in both heat stroke and ME/CFS. Finally, some predisposing factors for heat stroke, such as pre-existing inflammation or infection, overlap with those for ME/CFS. Notwithstanding important differences – and despite heat stroke being an acute condition – the overlaps between heat stroke and ME/CFS suggest common pathways in the physiological responses to very different forms of stressors, which are manifested in different clinical outcomes. The human studies and animal models of heat stroke provide an explanation for the self-perpetuation of homeostatic imbalance centered around intestinal wall injury, which could also inform the understanding of ME/CFS. Moreover, the studies of novel therapeutics for heat stroke might provide new avenues for the treatment of ME/CFS. Future research should be conducted to investigate the similarities between heat stroke and ME/CFS to help identify the potential treatments for ME/CFS.

Source: Dominic Stanculescu, Nuno Sepúlveda, Chin Leong Lim and Jonas Bergquist. Lessons From Heat Stroke for Understanding Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front. Neurol., 13 December 2021 | https://doi.org/10.3389/fneur.2021.789784  https://www.frontiersin.org/articles/10.3389/fneur.2021.789784/full (Full text)

The role of mitochondria in ME/CFS: a perspective

Abstract:

Chronic fatigue syndrome (CFS) also known as Myalgic encephalomyelitis (ME) is a debilitating disease, characterized by the symptom of severe fatigue. ME/CFS is a heterogeneous condition in both clinical presentation and disease duration. A diagnosis of ME/CFS is based on the exclusion of other diseases due to a current lack of known biomarkers for the disease. Patients may be split into categories based on the severity of their illness – mild, moderate and severe. Here we consider some of the recent advances in the understanding of mitochondrial dysfunction and mitochondrial DNA (mtDNA) variation that may have relevance to ME/CFS.

Thus far, we have shown that ME/CFS patients do not harbor proven mtDNA mutations, another exclusion, albeit an important one. As such this group of patients do not fall within the category of patients with mitochondrial disorder. If ME/CFS patients have some form of mitochondrial dysfunction, the form and cause of this dysfunction is a matter of debate. The current data underlines the need to move from small studies to larger endeavors applying multiple methods to well-defined cohorts with samples taken longitudinally.

Source: Cara Tomas & Joanna L Elson (2019) The role of mitochondria in ME/CFS: a perspective, Fatigue: Biomedicine, Health & Behavior, 7:1, 52-58, DOI: 10.1080/21641846.2019.1580855 https://www.tandfonline.com/doi/abs/10.1080/21641846.2019.1580855  (Full text)