Killer Cell Immunoglobulin-like Receptor Genotype and Haplotype Investigation of Natural Killer Cells from an Australian Population of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients

Abstract:

Killer cell immunoglobulin-like receptor (KIR) genes encode for activating and inhibitory surface receptors, which are correlated with the regulation of Natural Killer (NK) cell cytotoxic activity. Reduced NK cell cytotoxic activity has been consistently reported in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients, and KIR haplotypes and allelic polymorphism remain to be investigated.

The aim of this article was to conduct a pilot study to examine KIR genotypes, haplotypes, and allelic polymorphism in CFS/ME patients and nonfatigued controls (NFCs). Comparison of KIR and allelic polymorphism frequencies revealed no significant differences between 20 CFS/ME patients and 20 NFCs.

A lower frequency of the telomeric A/B motif (P < 0.05) was observed in CFS/ME patients compared with NFCs. This pilot study is the first to report the differences in the frequency of KIR on the telomeric A/B motif in CFS/ME patients. Further studies with a larger CFS/ME cohort are required to validate these results.

 

Source: Huth TK, Brenu EW, Staines DR, Marshall-Gradisnik SM. Killer Cell Immunoglobulin-like Receptor Genotype and Haplotype Investigation of Natural Killer Cells from an Australian Population of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients. Gene Regul Syst Bio. 2016 Jun 19;10:43-9. doi: 10.4137/GRSB.S39861. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4913894/ (Full article)

 

Novel identification and characterisation of Transient receptor potential melastatin 3 ion channels on Natural Killer cells and B lymphocytes: effects on cell signalling in Chronic fatigue syndrome/Myalgic encephalomyelitis patients

Abstract:

BACKGROUND: Transient receptor potential melastatin 3 (TRPM3) cation channels are ubiquitously expressed by multiple cells and have an important regulatory role in calcium-dependent cell signalling to help maintain cellular homeostasis. TRPM3 protein expression has yet to be determined on Natural Killer (NK) cells and B lymphocytes. Multiple single nucleotide polymorphisms have been reported in TRPM3 genes from isolated peripheral blood mononuclear cells, NK and B cells in Chronic fatigue syndrome/Myalgic encephalomyelitis (CFS/ME) patients and have been proposed to correlate with illness presentation. The object of the study was to assess TRPM3 surface expression on NK and B lymphocytes from healthy controls, followed by a comparative investigation examining TRPM3 surface expression, and cytoplasmic and mitochondrial calcium influx in CD19(+) B cells, CD56(bright) and CD56(dim) cell populations from CFS/ME patients.

RESULTS: TRPM3 cell surface expression was identified for NK and B lymphocytes in healthy controls (CD56(bright) TRPM3 35.72 % ± 7.37; CD56(dim) 5.74 % ± 2.00; B lymphocytes 2.05 % ± 0.19, respectively). There was a significant reduction of TRPM3 surface expression on CD19(+) B cells (1.56 ± 0.191) and CD56(bright) NK cells (17.37 % ± 5.34) in CFS/ME compared with healthy controls. Anti-CD21 and anti-IgM conjugated biotin was cross-linked with streptavidin,and subsequently treatment with thapsigargin. This showed a significant reduction in cytoplasmic calcium ion concentration in CD19(+) B lymphocytes. CD56(bright) NK cells also had a significant decrease in cytoplasmic calcium in the presence of 2-APB and thapsigargin in CFS/ME patients.

CONCLUSIONS: The results from this preliminary investigation identify, for the first time, TRPM3 surface expression on both NK and B lymphocytes in healthy controls. We also report for the first time, significant reduction in TRPM3 cell surface expression in NK and B lymphocytes, as well as decreased intracellular calcium within specific conditions in CFS/ME patients. This warrants further examination of these pathways to elucidate whether TRPM3 and impaired calcium mobilisation has a role in CFS/ME.

 

Source: Nguyen T, Staines D, Nilius B, Smith P, Marshall-Gradisnik S. Novel identification and characterisation of Transient receptor potential melastatin 3 ion channels on Natural Killer cells and B lymphocytes: effects on cell signalling in Chronic fatigue syndrome/Myalgic encephalomyelitis patients. Biol Res. 2016 May 31;49(1):27. doi: 10.1186/s40659-016-0087-2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888729/ (Full article)

 

Graded versus Intermittent Exercise Effects on Lymphocytes in Chronic Fatigue Syndrome

Abstract:

PURPOSE: There is increasing evidence of immune system dysfunction in chronic fatigue syndrome (CFS), but little is known of the regular exercise effects on immune cell parameters. This pilot study investigated the effects of graded and intermittent exercise on CD4 lymphocyte subset counts and activation compared with usual care.

METHODS: Twenty-four CFS patients (50.2 ± 10 yr) were randomized to graded exercise (GE), intermittent exercise (IE), or usual care (UC) groups; 18 sedentary non-CFS participants (50.6 ± 10 yr) were controls (CTL) for blood and immunological comparisons. Outcome measures were pre- and postintervention flow cytometric analyses of circulating lymphocyte subset cell counts; expression of CD3, CD4, CD25, and CD134; full blood counts; and V˙O2peak.

RESULTS: Preintervention, CD3 cell counts, and expression of CD4, CD25, CD134, and CD4CD25CD134 were significantly lower in GE, IE, and UC compared with CTL (P < 0.05). Total lymphocyte concentration was significantly lower in GE and IE groups compared with CTL. There were significant postintervention increases in i) expression of CD4 and CD4CD25CD134 for GE and IE, but CD25 and CD134 for IE only; ii) circulating counts of CD3 and CD4 for GE, and CD3, CD4, CD8, CD3CD4CD8, CD3CD16CD56, CD19, and CD45 for IE; iii) neutrophil concentration for GE; and iv) V˙O2peak and elapsed test time for IE and GE, V˙Epeak for IE.

CONCLUSIONS: Twelve weeks of GE and IE training significantly improved CD4 lymphocyte activation and aerobic capacity without exacerbating CFS symptoms. IE may be a more effective exercise modality with regard to enhanced CD4 activation in CFS patients.

 

Source: Broadbent S, Coutts R. Graded versus Intermittent Exercise Effects on Lymphocytes in Chronic Fatigue Syndrome. Med Sci Sports Exerc. 2016 Sep;48(9):1655-63. doi: 10.1249/MSS.0000000000000957. https://www.ncbi.nlm.nih.gov/pubmed/27116645

 

Natural killer cells and single nucleotide polymorphisms of specific ion channels and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

AIM: The aim of this paper was to determine natural killer (NK) cytotoxic activity and if single nucleotide polymorphisms (SNPs) and genotypes in transient receptor potential (TRP) ion channels and acetylcholine receptors (AChRs) were present in isolated NK cells from previously identified myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) patients.

SUBJECTS AND METHODS: A total of 39 ME/CFS patients (51.69±2 years old) and 30 unfatigued controls (47.60±2.39 years old) were included in this study. Patients were defined according to the 1994 Centers for Disease Control and Prevention criteria. Flow cytometry protocols were used to examine NK cytotoxic activity. A total of 678 SNPs from isolated NK cells were examined for 21 mammalian TRP ion channel genes and for nine mammalian AChR genes via the Agena Bioscience iPlex Gold assay. SNP association and genotype was determined using analysis of variance and Plink software.

RESULTS: ME/CFS patients had a significant reduction in NK percentage lysis of target cells (17%±4.68%) compared with the unfatigued control group (31%±6.78%). Of the 678 SNPs examined, eleven SNPs for TRP ion channel genes (TRPC4, TRPC2, TRPM3, and TRPM8) were identified in the ME/CFS group. Five of these SNPs were associated with TRPM3, while the remainder were associated with TRPM8, TRPC2, and TRPC4 (P<0.05). Fourteen SNPs were associated with nicotinic and muscarinic AChR genes: six with CHRNA3, while the remainder were associated with CHRNA2, CHRNB4, CHRNA5, and CHRNE (P<0.05). There were sixteen genotypes identified from SNPs in TRP ion channels and AChRs for TRPM3 (n=5), TRPM8 (n=2), TRPC4 (n=3), TRPC2 (n=1), CHRNE (n=1), CHRNA2 (n=2), CHRNA3 (n=1), and CHRNB4 (n=1) (P<0.05).

CONCLUSION: We identified a number of SNPs and genotypes for TRP ion channels and AChRs from isolated NK cells in patients with ME/CFS, suggesting these SNPs and genotypes may be involved in changes in NK cell function and the development of ME/CFS pathology. These anomalies suggest a role for dysregulation of Ca(2+) in AChR and TRP ion channel signaling in the pathomechanism of ME/CFS.

 

Source: Marshall-Gradisnik S, Huth T, Chacko A, Johnston S, Smith P, Staines D. Natural killer cells and single nucleotide polymorphisms of specific ion channels and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome. Appl Clin Genet. 2016 Mar 31;9:39-47. doi: 10.2147/TACG.S99405. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821384/ (Full article)

 

ERK1/2, MEK1/2 and p38 downstream signalling molecules impaired in CD56 dim CD16+ and CD56 bright CD16 dim/- natural killer cells in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis patients

Abstract:

BACKGROUND: Natural Killer (NK) cell effector functions are dependent on phosphorylation of the mitogen-activated protein kinases (MAPK) pathway to produce an effective immune response for the clearance of target cells infected with viruses, bacteria or malignantly transformed cells. Intracellular signals activating NK cell cytokine production and cytotoxic activity are propagated through protein phosphorylation of MAPKs including MEK1/2, ERK1/2, p38 and JNK. Reduced NK cell cytotoxic activity is consistently reported in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) patients and intracellular signalling by MAPK in NK cells remains to be investigated. Therefore, the purpose of this paper was to investigate MAPK downstream signalling molecules in NK cell phenotypes from CFS/ME patients.

METHODS: Flow cytometric protocols were used to measure phosphorylation of the MAPK pathway in CD56(bright)CD16(dim/-) and CD56(dim)CD16(+) NK cells following stimulation with K562 tumour cells or phorbol-12-myristate-13-acetate plus ionomycin. NK cell cytotoxic activity, degranulation, lytic proteins and cytokine production were also measured as markers for CD56(bright)CD16(dim/-) and CD56(dim)CD16(+) NK cell function using flow cytometric protocols.

RESULTS: CFS/ME patients (n = 14) had a significant decrease in ERK1/2 in CD56(dim)CD16(+) NK cells compared to the non-fatigued controls (n = 11) after incubation with K562 cells. CD56(bright)CD16(dim/-) NK cells from CFS/ME patients had a significant increase in MEK1/2 and p38 following incubation with K562 cells.

CONCLUSIONS: This is the first study to report significant differences in MAPK intracellular signalling molecules in CD56(dim)CD16(+) and CD56(bright)CD16(dim/-) NK cells from CFS/ME patients. The current results highlight the importance of intracellular signalling through the MAPK pathway for synergistic effector function of CD56(dim)CD16(+) and CD56(bright)CD16(dim/-) NK cells to ensure efficient clearance of target cells. In CFS/ME patients, dysfunctional MAPK signalling may contribute to reduced NK cell cytotoxic activity.

 

Source: Huth TK, Staines D, Marshall-Gradisnik S. ERK1/2, MEK1/2 and p38 downstream signalling molecules impaired in CD56 dim CD16+ and CD56 bright CD16 dim/- natural killer cells in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis patients. J Transl Med. 2016 Apr 21;14:97. doi: 10.1186/s12967-016-0859-z. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839077/ (Full article)

 

Regulatory T, natural killer T and γδ T cells in multiple sclerosis and chronic fatigue syndrome/myalgic encephalomyelitis: a comparison

Abstract:

BACKGROUND: Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME), and Multiple Sclerosis (MS) may share some similarities in relation to reduced NK cell activity. It is likely that other cells such as regulatory T (Tregs), invariant Natural Killer T (iNKT) and gamma delta T (γδ T) cells may also be dysregulated in CFS/ME and MS.

OBJECTIVE: To evaluate and compare specific immune regulatory cells of patients with CFS/ME, patients with MS and healthy controls.

METHOD: Sixty three volunteers were included in this study: 24 were CFS/ME patients, 11 were MS patients and 27 were healthy controls. Blood samples were obtained from all participants for flow cytometry analysis of iNKT cells, Tregs and γδ T cell phenotypes.

RESULTS: We observed a significant increase in Tregs in the CFS/ME group (p≤0.05) compared to the healthy control group. Total γδ and γδ2 T cells were significantly reduced in MS patients in comparison with the healthy control group. Conversely, CD4+iNKT percentage of iNKT, was significantly increased in the CFS/ME group compared with healthy controls and the double-negative iNKT percentage of iNKT significantly decreased compared with the healthy control group.

CONCLUSIONS: This study has not identified any immunological disturbances that are common in both MS and CFS/ME patients. However, the differential expression of cell types between the conditions investigated suggests different pathways of disease. These differences need to be explored in further studies.

 

Source: Ramos S, Brenu E, Broadley S, Kwiatek R, Ng J, Nguyen T, Freeman S, Staines D, Marshall-Gradisnik S. Regulatory T, natural killer T and γδ T cells in multiple sclerosis and chronic fatigue syndrome/myalgic encephalomyelitis: a comparison. Asian Pac J Allergy Immunol. 2016 Dec;34(4):300-305. doi: 10.12932/AP0733. http://apjai-journal.org/wp-content/uploads/2016/12/8RegulatoryTnaturalkillerAPJAIVol34No4December2016P300.pdf (Full text as PDF)

 

MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME

Abstract:

BACKGROUND: Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients.

METHODS: miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets.

RESULTS: Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology.

CONCLUSION: This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function.

 

Source: Petty RD, McCarthy NE, Le Dieu R, Kerr JR. MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME). PLoS One. 2016 Mar 11;11(3):e0150904. doi: 10.1371/journal.pone.0150904. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788442/ (Full article)

 

Illness progression in chronic fatigue syndrome: a shifting immune baseline

Abstract:

BACKGROUND: Validation of biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) across data sets has proven disappointing. As immune signature may be affected by many factors, our objective was to explore the shift in discriminatory cytokines across ME/CFS subjects separated by duration of illness.

METHODS: Cytokine expression collected at rest across multiple studies for female ME/CFS subjects (i) 18 years or younger, ill for 2 years or less (n = 18), (ii) 18-50 years of age, ill for 7 years (n = 22), and (iii) age 50 years or older (n = 28), ill for 11 years on average. Control subjects were matched for age and body mass index (BMI). Data describing the levels of 16 cytokines using a chemiluminescent assay was used to support the identification of separate linear classification models for each subgroup. In order to isolate the effects of duration of illness alone, cytokines that changed significantly with age in the healthy control subjects were excluded a priori.

RESULTS: Optimal selection of cytokines in each group resulted in subsets of IL-1α, 6, 8, 15 and TNFα. Common to any 2 of 3 groups were IL-1α, 6 and 8. Setting these 3 markers as a triple screen and adjusting their contribution according to illness duration sub-groups produced ME/CFS classification accuracies of 75-88 %. The contribution of IL-1α, higher in recently ill adolescent ME/CFS subjects was progressively less important with duration. While high levels of IL-8 screened positive for ME/CFS in the recently afflicted, the opposite was true for subjects ill for more than 2 years. Similarly, while low levels of IL-6 suggested early ME/CFS, the reverse was true in subjects over 18 years of age ill for more than 2 years.

CONCLUSIONS: These preliminary results suggest that IL-1α, 6 and 8 adjusted for illness duration may serve as robust biomarkers, independent of age, in screening for ME/CFS.

 

Source: Russell L, Broderick G, Taylor R, Fernandes H, Harvey J, Barnes Z, Smylie A, Collado F, Balbin EG, Katz BZ, Klimas NG, Fletcher MA. Illness progression in chronic fatigue syndrome: a shifting immune baseline. BMC Immunol. 2016 Mar 10;17:3. doi: 10.1186/s12865-016-0142-3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785654/ (Full article)

 

A Preliminary Comparative Assessment of the Role of CD8+ T Cells in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis and Multiple Sclerosis

Abstract:

Background. CD8+ T cells have putative roles in the regulation of adaptive immune responses during infection. The purpose of this paper is to compare the status of CD8+ T cells in Multiple Sclerosis (MS) and Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME).

Methods. This preliminary investigation comprised 23 CFS/ME patients, 11 untreated MS patients, and 30 nonfatigued controls. Whole blood samples were collected from participants, stained with monoclonal antibodies, and analysed on the flow cytometer. Using the following CD markers, CD27 and CD45RA (CD45 exon isoform 4), CD8+ T cells were divided into naïve, central memory (CM), effector memory CD45RA- (EM), and effector memory CD45RA+ (EMRA) cells.

Results. Surface expressions of BTLA, CD127, and CD49/CD29 were increased on subsets of CD8+ T cells from MS patients. In the CFS/ME patients CD127 was significantly decreased on all subsets of CD8+ T cells in comparison to the nonfatigued controls. PSGL-1 was significantly reduced in the CFS/ME patients in comparison to the nonfatigued controls.

Conclusions. The results suggest significant deficits in the expression of receptors and adhesion molecules on subsets of CD8+ T cells in both MS and CFS/ME patients. These deficits reported may contribute to the pathogenesis of these diseases. However, larger sample size is warranted to confirm and support these encouraging preliminary findings.

 

Source: Brenu EW, Broadley S, Nguyen T, Johnston S, Ramos S, Staines D, Marshall-Gradisnik S. A Preliminary Comparative Assessment of the Role of CD8+ T Cells in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis and Multiple Sclerosis. J Immunol Res. 2016;2016:9064529. doi: 10.1155/2016/9064529. Epub 2016 Jan 4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736227/ (Full article)

 

Increased expression of activation antigens on CD8+ T lymphocytes in Myalgic Encephalomyelitis/chronic fatigue syndrome: inverse associations with lowered CD19+ expression and CD4+/CD8+ ratio, but no associations with (auto)immune, leaky gut, oxidative and nitrosative stress biomarkers

Abstract:

BACKGROUND: There is now evidence that specific subgroups of patients with Myalgic Encephalomyelitis / chronic fatigue syndrome (ME/CFS) suffer from a neuro-psychiatric-immune disorder. This study was carried out to delineate the expression of the activation markers CD38 and human leukocyte antigen (HLA) DR on CD4+ and CD8+ peripheral blood lymphocytes in ME/CFS.

METHODS: Proportions and absolute numbers of peripheral lymphocytes expressing CD3+, CD19+, CD4+, CD8+, CD38+ and HLA-DR+ were measured in ME/CFS (n=139), chronic fatigue (CF, n=65) and normal controls (n=40).

RESULTS: The proportions of CD3+, CD8+, CD8+CD38+ and CD8+HLA-DR+ were significantly higher in ME/CFS patients than controls, while CD38+, CD8+CD38+, CD8+HLA-DR+ and CD38+HLA-DR+ were significantly higher in ME/CFS than CF. The percentage of CD19+ cells and the CD4+/CD8+ ratio were significantly lower in ME/CFS and CF than in controls. There were highly significant inverse correlations between the increased expression of CD38+, especially that of CD8+CD38+, and the lowered CD4+/CD8+ ratio and CD19+ expression. There were no significant associations between the flow cytometric results and severity or duration of illness and peripheral blood biomarkers of oxidative and nitrosative stress (O&NS, i.e. IgM responses to O&N modified epitopes), leaky gut (IgM or IgA responses to LPS of gut commensal bacteria), cytokines (interleukin-1, tumor necrosis factor-α), neopterin, lysozyme and autoimmune responses to serotonin.

CONCLUSIONS: The results support that a) increased CD38 and HLA-DR expression on CD8+ T cells are biomarkers of ME/CFS; b) increased CD38 antigen expression may contribute to suppression of the CD4+/CD8+ ratio and CD19+ expression; c) there are different immune subgroups of ME/CFS patients, e.g. increased CD8+ activation marker expression versus inflammation or O&NS processes; and d) viral infections or reactivation may play a role in a some ME/CFS patients.

 

Source: Maes M, Bosmans E, Kubera M. Increased expression of activation antigens on CD8+ T lymphocytes in Myalgic Encephalomyelitis/chronic fatigue syndrome: inverse associations with lowered CD19+ expression and CD4+/CD8+ ratio, but no associations with (auto)immune, leaky gut, oxidative and nitrosative stress biomarkers. Neuro Endocrinol Lett. 2015;36(5):439-46. https://www.ncbi.nlm.nih.gov/pubmed/26707044