Free-water-corrected diffusion and adrenergic/muscarinic antibodies in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Background and purpose: Free-water-corrected diffusion tensor imaging (FW-DTI), a new analysis method for diffusion MRI, can indicate neuroinflammation and degeneration. There is increasing evidence of autoimmune etiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We used FW-DTI and conventional DTI to investigate microstructural brain changes related to autoantibody titers in patients with ME/CFS.

Methods: We prospectively examined 58 consecutive right-handed ME/CFS patients who underwent both brain MRI including FW-DTI and a blood analysis of autoantibody titers against β1 adrenergic receptor (β1 AdR-Ab), β2 AdR-Ab, M3 acetylcholine receptor (M3 AchR-Ab), and M4 AchR-Ab. We investigated the correlations between these four autoantibody titers and three FW-DTI indices-free water (FW), FW-corrected fractional anisotropy (FAt), and FW-corrected mean diffusivity-as well as two conventional DTI indices-fractional anisotropy (FA) and mean diffusivity. The patients’ age and gender were considered as nuisance covariates. We also evaluated the correlations between the FW-DTI indices and the performance status and disease duration.

Results: Significant negative correlations between the serum levels of several autoantibody titers and DTI indices were identified, mainly in the right frontal operculum. The disease duration showed significant negative correlations with both FAt and FA in the right frontal operculum. The changes in the FW-corrected DTI indices were observed over a wider extent compared to the conventional DTI indices.

Conclusions: These results demonstrate the value of using DTI to assess the microstructure of ME/CFS. The abnormalities of right frontal operculum may be a diagnostic marker for ME/CFS.

Source: Kimura Y, Sato W, Maikusa N, Ota M, Shigemoto Y, Chiba E, Arizono E, Maki H, Shin I, Amano K, Matsuda H, Yamamura T, Sato N. Free-water-corrected diffusion and adrenergic/muscarinic antibodies in myalgic encephalomyelitis/chronic fatigue syndrome. J Neuroimaging. 2023 May 27. doi: 10.1111/jon.13128. Epub ahead of print. PMID: 37243973. https://pubmed.ncbi.nlm.nih.gov/37243973/

Symptom presentation and quality of life are comparable in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and post COVID-19 condition

Abstract:
Background and Οbjective: Considerable overlap exists in the clinical presentation of Post COVID-19 Condition and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). The current study aimed to compare symptoms and patient-reported Quality of Life (QoL) among people with Post COVID-19 Condition and ME/CFS in Australia. Methods: QoL data was collected from n=61 ME/CFS patients, n=31 Post COVID-19 Condition patients, and n=54 Healthy Controls (HCs) via validated instruments. The ME/CFS and Post COVID-19 Condition participants also provided self-reported severity and frequency of symptoms derived from the Canadian and International Consensus Criteria for ME/CFS and the World Health Organization case definition for Post COVID-19 Condition. Study variables were compared with Chi-square, Fisher’s exact, Fisher-Freeman-Halton, Mann-Whitney U, and Kruskal-Wallis H tests using Statistical Package for the Social Sciences version 29. Symptom clusters among the two illness cohorts were identified with hierarchical cluster analysis.
Results: ME/CFS was associated with a higher prevalence of short-term memory loss (p=0.039), muscle weakness (p<0.001), lymphadenopathy (p=0.013), and nausea (p=0.003). People with ME/CFS also reported more severe light-headedness (p=0.011) and more frequent unrefreshed sleep (p=0.011), but less frequent heart palpitations (p=0.040). Symptom prevalence, severity, and frequency were otherwise comparable. Few differences existed in the QoL of the two illness cohorts, both of which returned significantly impaired QoL scores when compared with HCs (p<0.001). Cluster analysis of symptom prevalence revealed four clusters: 1) Low gastrointestinal, low neurosensory; 2) Moderate gastrointestinal, low orthostatic and memory loss; 3) Moderate gastrointestinal, high orthostatic and memory loss; and 4) High gastrointestinal, high pain, which did not differ in sociodemographic information, illness status, or diagnostic criteria met.
Conclusions: Post COVID-19 Condition and ME/CFS are remarkably similar in presentation and, like ME/CFS, Post COVID-19 Condition has a profound and negative impact on patient QoL. Gastrointestinal symptoms may have a role in determining ME/CFS and Post COVID-19 Condition subtypes.
Source: Weigel B, Eaton-Fitch N, Thapaliya K, Marshall-Gradisnik S. Symptom presentation and quality of life are comparable in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and post COVID-19 condition. Population Medicine. 2023;5(Supplement):A372. doi:10.18332/popmed/165669.  http://www.populationmedicine.eu/Symptom-presentation-and-quality-of-life-are-comparable-in-Myalgic-Encephalomyelitis,165669,0,2.html

Case Study: COVID-19 Brain Fog or Auditory Processing Disorder?

A wide array of symptoms have been directly associated with COVID-19 following recovery, but they can also occur several weeks or months after the diagnosis. These include, but are not limited to, damage to the respiratory tract as well as decreased cognition and other brain functions. The nonmedical term used to describe these post-COVID-19 problems is “brain fog.”

The symptoms of brain fog are similar to mild cognitive impairment or, of interest to audiologists, an auditory processing disorder (APD). 2 COVID-19 has neurological consequences and affects specific areas of the brain, such as the cingulate cortex (i.e. emotions, memory, depression, and decision of action). 3 Brain fog is also associated with several symptoms related to hearing and communication, which can affect the accomplishment of routine daily tasks. Many of those can be mistaken for or coexist with APD symptoms. These include “difficulty attending or staying focused, difficulty concentrating, difficulty understanding or remembering instructions, language problems, short-term memory problems,” to mention a few. 2 However, what might appear as a brain fog case could be an undiagnosed or even a pre-existing APD issue. 2 Symptoms could include struggling to keep track of conversations, forgetfulness and memory issues, problems following directions, and several cognitive difficulties. 2

This report presents the case of a 31-year-old medical doctor who was diagnosed with COVID-19 in December 2020, and later identified with APD symptoms that are now commonly seen in post-COVID-19 brain fog patients. Auditory training following the Buffalo Model 4 resolved the patient’s chief complaints following 12 treatment sessions. This issue is one of many that could shed light on the great potential auditory training has in resolving brain fog complaints that overlap with what is commonly seen in APD patients, highlighting the concerns regarding COVID-19’s direct effects on auditory processing.

Source: Alexander, Angela Loucks AuD, MNZAS, CCC-A; DiSogra, Robert M. AuD; Abbas, Fatima BS; Braund, Stacey AuD, CCC-A; Spokes, Chelsea BSpHLSc, MClinAud. Case Study: COVID-19 Brain Fog or Auditory Processing Disorder?. The Hearing Journal 76(04):p 18,19,20,22,23,24, April 2023. | DOI: 10.1097/01.HJ.0000927332.17564.4e https://journals.lww.com/thehearingjournal/Fulltext/2023/04000/Case_Study__COVID_19_Brain_Fog_or_Auditory.2.aspx (Full text)

Neurocognitive and psychiatric symptoms following infection with COVID-19: Evidence from laboratory and population studies

Abstract:

Objective: The objective of the current investigation was to examine associations between symptomatic COVID-19 history, neurocognitive function, and psychiatric symptoms using cognitive task performance, functional brain imaging, and a prospective population survey.

Methods: Study 1 was a laboratory study conducted between 3 May 2022 and 16 Nov 2022 involving 120 fully vaccinated community dwelling adults between 18 and 84 years of age (Mage = 31.96 (SD = 20.71), 63.3% female). In this cross-sectional study we examined the association between symptomatic COVID-19 infection history and performance on three computer tasks assessing cognitive function (Flanker interference, delay discounting and simple reaction time) and measured oxygen saturation within the prefrontal cortex using functional near infrared spectroscopy (fNIRS). Study 2 was a 2-wave population survey undertaken between 28 September 2021 and 21 March 2022, examining the prospective relationship between symptomatic COVID-19 and self-reported symptoms of cognitive dysfunction, depressive symptoms, anxiety symptoms, and agitation at 6-month follow up. The sample (N = 2,002, M age = 37.0, SD = 10.4; 60.8% female) was collected using a quota process to ensure equal numbers of vaccinated and unvaccinated individuals. Structural equation modelling with latent variables was performed on the population-level data, evaluating the fit of the proposed mediational model of symptomatic COVID-19 to psychiatric symptoms through cognitive dysfunction.

Results: Findings from Study 1 revealed significant effects of symptomatic COVID-19 history on Flanker interference and delay discounting. Effects on flanker performance were significantly stronger among older adult women (effect: 9.603, SE = 4.452, t = 2.157, p = .033), and were accompanied by task-related changes cerebral oxygenation at the right superior frontal gyrus (F (1, 143.1) = 4.729, p = .031). Additionally, those with a symptomatic COVID-19 infection history showed evidence of amplified delay discounting (coefficient = 0.4554, SE = 0.2208, t = 2.0629, p = .041). In Study 2, baseline symptomatic COVID-19 history was associated with self-reported cognitive dysfunction and a latent variable reflecting psychiatric symptoms of anxiety, depression and agitation at follow-up. Mediational analyses revealed evidence of cognitive mediation of clinically significant psychiatric outcomes: depression (indirect effect = 0.077, SE = 0.026, p = .003) and generalized anxiety (indirect effect = 0.060, SE = 0.021, p = .004).

Conclusions: Converging findings from laboratory and population survey data support the conclusion that symptomatic COVID-19 infection is associated with task-related, functional imaging and self-reported indices of cognitive dysfunction as well as psychiatric symptoms. In some cases, these findings appear to be more amplified among women than men, and among older women than younger.

Source: Hall PA, Ayaz H, Meng G, Hudson A, Sakib MN, Quah ACK, Agar TK, Lee JA, Boudreau C, Fong GT. Neurocognitive and psychiatric symptoms following infection with COVID-19: Evidence from laboratory and population studies. Brain Behav Immun Health. 2023 Mar;28:100595. doi: 10.1016/j.bbih.2023.100595. Epub 2023 Jan 24. PMID: 36713476; PMCID: PMC9870612. https://www.sciencedirect.com/science/article/pii/S2666354623000091?via%3Dihub (Full study)

The Conners Continuous Performance Test CPT3™: Is it a reliable marker to predict neurocognitive dysfunction in Myalgic encephalomyelitis/chronic fatigue syndrome?

Introduction: The main objective is to delimit the cognitive dysfunction associated with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) in adult patients by applying the Continuous Performance Test (CPT3). Additionally, provide empirical evidence on the usefulness of this computerized neuropsychological test to assess ME/CFS.

Method: The final sample (n = 225; 158 Patients/67 Healthy controls) were recruited in a Central Sensitization Syndromes (CSS) specialized unit in a tertiary hospital. All participants were administered this neuropsychological test.

Results: There were significant differences between ME/CFS and healthy controls in all the main measures of CPT3. Mainly, patients had a worse indicator of inattentiveness, sustained attention, vigilance, impulsivity, slow reaction time, and more atypical T-scores, which is associated with a likelihood of having a disorder characterized by attention deficits, such as Attention Deficit Hyperactivity Disorder (ADHD). In addition, relevant correlations were obtained between the CPT3 variables in the patient’s group. The most discriminative indicators of ME/CFS patients were Variability and Hit Reaction Time, both measures of response speed.

Conclusion: The CPT3 is a helpful tool to discriminate neurocognitive impairments from attention and response speed in ME/CFS patients, and it could be used as a marker of ME/CFS severity for diagnosing or monitoring this disease.

Source: Fernández-Quirós J, Lacasa-Cazcarra M, Alegre-Martín J, Sanmartín-Sentañes R, Almirall M, Launois-Obregón P, Castro-Marrero J, Rodríguez-Urrutia A, Navarro-Sanchis JA and Ramos-Quiroga JA (2023) The Conners Continuous Performance Test CPT3: Is it a reliable marker to predict neurocognitive dysfunction in Myalgic encephalomyelitis/chronic fatigue syndrome? Front. Psychol. 14:1127193. doi: 10.3389/fpsyg.2023.1127193 https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1127193/full (Full text)

Cortical Grey matter volume depletion links to neurological sequelae in post COVID-19 “long haulers”

Abstract:

Objective: COVID-19 (SARS-CoV-2) has been associated with neurological sequelae even in those patients with mild respiratory symptoms. Patients experiencing cognitive symptoms such as “brain fog” and other neurologic sequelae for 8 or more weeks define “long haulers”. There is limited information regarding damage to grey matter (GM) structures occurring in COVID-19 “long haulers”. Advanced imaging techniques can quantify brain volume depletions related to COVID-19 infection which is important as conventional Brain MRI often fails to identify disease correlates. 3-dimensional voxel-based morphometry (3D VBM) analyzes, segments and quantifies key brain volumes allowing comparisons between COVID-19 “long haulers” and normative data drawn from healthy controls, with values based on percentages of intracranial volume.

Methods: This is a retrospective single center study which analyzed 24 consecutive COVID-19 infected patients with long term neurologic symptoms. Each patient underwent Brain MRI with 3D VBM at median time of 85 days following laboratory confirmation. All patients had relatively mild respiratory symptoms not requiring oxygen supplementation, hospitalization, or assisted ventilation. 3D VBM was obtained for whole brain and forebrain parenchyma, cortical grey matter (CGM), hippocampus, and thalamus.

Results: The results demonstrate a statistically significant depletion of CGM volume in 24 COVID-19 infected patients. Reduced CGM volume likely influences their long term neurological sequelae and may impair post COVID-19 patient’s quality of life and productivity.

Conclusion: This study contributes to understanding effects of COVID-19 infection on patient’s neurocognitive and neurological function, with potential for producing serious long term personal and economic consequences, and ongoing challenges to public health systems.

Source: Rothstein TL. Cortical Grey matter volume depletion links to neurological sequelae in post COVID-19 “long haulers”. BMC Neurol. 2023 Jan 17;23(1):22. doi: 10.1186/s12883-023-03049-1. PMID: 36647063; PMCID: PMC9843113. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843113/ (Full text)

Cognitive impairments among patients in a long-COVID clinic: Prevalence, pattern and relation to illness severity, work function and quality of life

Abstract:

Background: A considerable proportion of people experience lingering symptoms after Coronavirus Disease 2019 (COVID-19). The aim of this study was to investigate the frequency, pattern and functional implications of cognitive impairments in patients at a long-COVID clinic who were referred after hospitalisation with COVID-19 or by their general practitioner.

Methods: Patients underwent cognitive screening and completed questionnaires regarding subjective cognition, work function and quality of life. Patients’ cognitive performance was compared with that of 150 age-, sex-, and education-matched healthy controls (HC) and with their individually expected performance calculated based on their age, sex and education.

Results: In total, 194 patients were assessed, on average 7 months (standard deviation: 4) after acute COVID-19.44-53 % of the patients displayed clinically relevant cognitive impairments compared to HC and to their expected performance, respectively. Moderate to large impairments were seen in global cognition and in working memory and executive function, while mild to moderate impairments occurred in verbal fluency, verbal learning and memory. Hospitalised (n = 91) and non-hospitalised (n = 103) patients showed similar degree of cognitive impairments in analyses adjusted for age and time since illness. Patients in the cognitively impaired group were older, more often hospitalised, had a higher BMI and more frequent asthma, and were more often female. More objective cognitive impairment was associated with more subjective cognitive difficulties, poorer work function and lower quality of life.

Limitations: The study was cross-sectional, which precludes causality inferences.

Conclusions: These findings underscore the need to assess and treat cognitive impairments in patients at long-COVID clinics.

Source: Miskowiak KW, Pedersen JK, Gunnarsson DV, Roikjer TK, Podlekareva D, Hansen H, Dall CH, Johnsen S. Cognitive impairments among patients in a long-COVID clinic: Prevalence, pattern and relation to illness severity, work function and quality of life. J Affect Disord. 2022 Dec 28;324:162-169. doi: 10.1016/j.jad.2022.12.122. Epub ahead of print. PMID: 36586593; PMCID: PMC9795797. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795797/ (Full text)

Brain correlates of subjective cognitive complaints in COVID-19 survivors: A multimodal magnetic resonance imaging study

Abstract:

Cognitive impairment represents a leading residual symptom of COVID-19 infection, which lasts for months after the virus clearance. Up-to-date scientific reports documented a wide spectrum of brain changes in COVID-19 survivors following the illness’s resolution, mainly related to neurological and neuropsychiatric consequences.

Preliminary insights suggest abnormal brain metabolism, microstructure, and functionality as neural under-layer of post-acute cognitive dysfunction. While previous works focused on brain correlates of impaired cognition as objectively assessed, herein we investigated long-term neural correlates of subjective cognitive decline in a sample of 58 COVID-19 survivors with a multimodal imaging approach.

Diffusion Tensor Imaging (DTI) analyses revealed widespread white matter disruption in the sub-group of cognitive complainers compared to the non-complainer one, as indexed by increased axial, radial, and mean diffusivity in several commissural, projection and associative fibres. Likewise, the Multivoxel Pattern Connectivity analysis (MVPA) revealed highly discriminant patterns of functional connectivity in resting-state among the two groups in the right frontal pole and in the middle temporal gyrus, suggestive of inefficient dynamic modulation of frontal brain activity and possible metacognitive dysfunction at rest.

Beyond COVID-19 actual pathophysiological brain processes, our findings point toward brain connectome disruption conceivably translating into clinical post-COVID cognitive symptomatology. Our results could pave the way for a potential brain signature of cognitive complaints experienced by COVID-19 survivors, possibly leading to identify early therapeutic targets and thus mitigating its detrimental long-term impact on quality of life in the post-COVID-19 stages.

Source: Paolini M, Palladini M, Mazza MG, Colombo F, Vai B, Rovere-Querini P, Falini A, Poletti S, Benedetti F. Brain correlates of subjective cognitive complaints in COVID-19 survivors: A multimodal magnetic resonance imaging study. Eur Neuropsychopharmacol. 2022 Dec 12;68:1-10. doi: 10.1016/j.euroneuro.2022.12.002. Epub ahead of print. PMID: 36640728. https://www.sciencedirect.com/science/article/pii/S0924977X22009130 (Full study)

Brain fog of post-COVID-19 condition and Chronic Fatigue Syndrome, same medical disorder?

Abstract:

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is characterized by persistent physical and mental fatigue. The post-COVID-19 condition patients refer physical fatigue and cognitive impairment sequelae. Given the similarity between both conditions, could it be the same pathology with a different precipitating factor?

Objective: To describe the cognitive impairment, neuropsychiatric symptoms, and general symptomatology in both groups, to find out if it is the same pathology. As well as verify if the affectation of smell is related to cognitive deterioration in patients with post-COVID-19 condition.

Methods: The sample included 42 ME/CFS and 73 post-COVID-19 condition patients. Fatigue, sleep quality, anxiety and depressive symptoms, the frequency and severity of different symptoms, olfactory function and a wide range of cognitive domains were evaluated.

Results: Both syndromes are characterized by excessive physical fatigue, sleep problems and myalgia. Sustained attention and processing speed were impaired in 83.3% and 52.4% of ME/CFS patients while in post-COVID-19 condition were impaired in 56.2% and 41.4% of patients, respectively. Statistically significant differences were found in sustained attention and visuospatial ability, being the ME/CFS group who presented the worst performance. Physical problems and mood issues were the main variables correlating with cognitive performance in post-COVID-19 patients, while in ME/CFS it was anxiety symptoms and physical fatigue.

Conclusions: The symptomatology and cognitive patterns were similar in both groups, with greater impairment in ME/CFS. This disease is characterized by greater physical and neuropsychiatric problems compared to post-COVID-19 condition. Likewise, we also propose the relevance of prolonged hyposmia as a possible marker of cognitive deterioration in patients with post-COVID-19.

Source: Azcue N, Gómez-Esteban JC, Acera M, Tijero B, Fernandez T, Ayo-Mentxakatorre N, Pérez-Concha T, Murueta-Goyena A, Lafuente JV, Prada Á, López de Munain A, Ruiz-Irastorza G, Ribacoba L, Gabilondo I, Del Pino R. Brain fog of post-COVID-19 condition and Chronic Fatigue Syndrome, same medical disorder? J Transl Med. 2022 Dec 6;20(1):569. doi: 10.1186/s12967-022-03764-2. PMID: 36474290. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-022-03764-2 (Full text)

Effects of SARS-CoV-2 Infection on Attention, Memory, and Sensorimotor Performance

Abstract:

Background: Recovery after SARS-CoV-2 infection is extremely variable, with some individuals recovering quickly, and others experiencing persistent long-term symptoms or developing new symptoms after the acute phase of infection, including fatigue, poor concentration, impaired attention, or memory deficits. Many existing studies reporting cognitive deficits associated with SARS-CoV-2 infection are limited by the exclusive use of self-reported measures or a lack of adequate comparison groups.

Methods: Forty-five participants, ages 18-70, (11 Long-COVID, 14 COVID, and 20 No-COVID) underwent behavioral testing with the NIH Toolbox Neuro-Quality of Life survey and selected psychometric tests, including a flanker interference task and the d2 Test of Attention.

Results: We found greater self-reported anxiety, apathy, fatigue, emotional dyscontrol, sleep disturbance and cognitive dysfunction in COVID compared No-COVID groups. After categorizing COVID patients according to self-reported concentration problems, we observed declining performance patterns in multiple attention measures across No-COVID controls, COVID and Long-COVID groups. COVID participants, compared to No-COVID controls, exhibited worse performance on NIH Toolbox assessments, including the Eriksen Flanker, Nine-Hole Pegboard and Auditory Verbal Learning tests.

Conclusion: This study provides convergent evidence that previous SARS-CoV-2 infection is associated with impairments in sustained attention, processing speed, self-reported fatigue and concentration. The finding that some patients have cognitive and visuomotor dysfunction in the absence of self-reported problems suggests that SARS-CoV-2 infection can have unexpected and persistent subclinical consequences.

Source: O’Connor EE, Rednam N, O’Brien R, O’Brien S, Rock P, Levine A, Zeffiro TA. Effects of SARS-CoV-2 Infection on Attention, Memory, and Sensorimotor Performance. medRxiv [Preprint]. 2022 Sep 23:2022.09.22.22280222. doi: 10.1101/2022.09.22.22280222. PMID: 36172134; PMCID: PMC9516858. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9516858/ (Full text)