Subcortical brain segment volumes in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Aims: There is controversy about brain volumes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (CFS) and Gulf War Illness (GWI). Subcortical regions were assessed because of significant differences in blood oxygenation level dependent signals in the midbrain between these diseases.

Materials and method: Magnetization-prepared rapid acquisition with gradient echo (MPRAGE) images from 3 Tesla structural magnetic resonance imaging scans from sedentary control (n = 34), CFS (n = 38) and GWI (n = 90) subjects were segmented in FreeSurfer. Segmented subcortical volumes were regressed against intracranial volume and age, then iteratively analyzed by multivariate general linear modeling with disease status, gender and demographics as independent co-variates.

Key findings: The optimal model for all subjects used disease status and gender as fixed factors with independent variables eliminated after iteration. Volumes of anterior and midanterior corpus callosum were significantly larger in GWI than CFS. Gender was a significant variable for many segment volumes, and so female and male subjects were analyzed separately. CFS females had smaller left putamen, right caudate and left cerebellum white matter than control women. CFS males had larger left hippocampus than GWI males. Orthostatic status and posttraumatic distress syndrome were not significant covariates.

Significance: CFS and GWI were appropriate “illness controls” for each other. The different patterns of adjusted segment volumes suggested that sexual dimorphisms contributed to pathological changes. Previous volumetric studies may need to be reevaluated to account for gender differences. The findings are framed by comparison to the spectrum of magnetic resonance imaging outcomes in the literature.

Source: Addiego FM, Zajur K, Knack S, Jamieson J, Rayhan RU, Baraniuk JN. Subcortical brain segment volumes in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Life Sci. 2021 Jun 29:119749. doi: 10.1016/j.lfs.2021.119749. Epub ahead of print. PMID: 34214570. https://pubmed.ncbi.nlm.nih.gov/34214570/

A systematic review of neurological impairments in myalgic encephalomyelitis/ chronic fatigue syndrome using neuroimaging techniques

Abstract:

BACKGROUND: Myalgic encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS) is a multi-system illness characterised by a diverse range of debilitating symptoms including autonomic and cognitive dysfunction. The pathomechanism remains elusive, however, neurological and cognitive aberrations are consistently described. This systematic review is the first to collect and appraise the literature related to the structural and functional neurological changes in ME/CFS patients as measured by neuroimaging techniques and to investigate how these changes may influence onset, symptom presentation and severity of the illness.

METHODS: A systematic search of databases Pubmed, Embase, MEDLINE (via EBSCOhost) and Web of Science (via Clarivate Analytics) was performed for articles dating between December 1994 and August 2019. Included publications report on neurological differences in ME/CFS patients compared with healthy controls identified using neuroimaging techniques such as magnetic resonance imaging, positron emission tomography and electroencephalography. Article selection was further refined based on specific inclusion and exclusion criteria. A quality assessment of included publications was completed using the Joanna Briggs Institute checklist.

RESULTS: A total of 55 studies were included in this review. All papers assessed neurological or cognitive differences in adult ME/CFS patients compared with healthy controls using neuroimaging techniques. The outcomes from the articles include changes in gray and white matter volumes, cerebral blood flow, brain structure, sleep, EEG activity, functional connectivity and cognitive function. Secondary measures including symptom severity were also reported in most studies.

CONCLUSIONS: The results suggest widespread disruption of the autonomic nervous system network including morphological changes, white matter abnormalities and aberrations in functional connectivity. However, these findings are not consistent across studies and the origins of these anomalies remain unknown. Future studies are required confirm the potential neurological contribution to the pathology of ME/CFS.

Source: Maksoud R, du Preez S, Eaton-Fitch N, Thapaliya K, Barnden L, Cabanas H, Staines D, Marshall-Gradisnik S. A systematic review of neurological impairments in myalgic encephalomyelitis/ chronic fatigue syndrome using neuroimaging techniques. PLoS One. 2020 Apr 30;15(4):e0232475. doi: 10.1371/journal.pone.0232475. eCollection 2020. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232475

MEA Review: Grey and white matter differences in chronic fatigue syndrome

The ME Association of Great Britain has provided an excellent review of a recent study on brain matter abnormalities in ME/CFS patients. The study, Grey and white matter differences in Chronic Fatigue Syndrome – A voxel-based morphometry study, was conducted by Julia Newton’s group at Newcastle University. Below is an excerpt from Dr. Shepherd’s summary of the study. To read a full discussion, along with an excellent overview of brain pathology and the implications of these brain abnormalities, go HERE. You can download the full review as a PDF file.

_______________________

Comment from Dr Charles Shepherd, Hon Medical Adviser, ME Association:

This study was carried out in Newcastle by Professor Julia Newton and colleagues – a team who have not only achieved a long and distinguished record in ME/CFS research but also have access to patients who have been very carefully assessed from a clinical point of view. So, the results should be taken seriously.

As has been pointed out in this review, three of the main criticisms of previous neuroimaging studies involving people with ME/CFS is that the numbers involved have often been far too small; there has been a lack of information from other control groups that would be relevant in addition to the use of healthy controls; and that different imaging techniques have been used.  So, not surprisingly, the results are not always consistent.

Despite these caveats, these results clearly add weight to the findings from previous neuroimaging studies describing white matter abnormalities in ME/CFS but also raise the possibility of grey matter involvement in ME/CFS.

There are several possible explanations for these findings but no clear answer has emerged in the paper.  Are they a primary feature of ME/CFS?  Or are they secondary to other factors – e.g. duration of illness, decrease in activity, severity of fatigue – that are related to having ME/CFS?  The only way to find out is through further research into what is clearly an interesting aspect of neuropathology in ME/CFS.

A fully referenced summary of all the key findings from both functional and structural neuroimaging studies in ME/CFS can be found in the Research section of the ME Association ‘An Exploration of the Key Clinical Issues’ available from our online shop.

You can read the rest of this brief summary HERE.

Right arcuate fasciculus abnormality in chronic fatigue syndrome

Abstract:

PURPOSE: To identify whether patients with chronic fatigue syndrome (CFS) have differences in gross brain structure, microscopic structure, or brain perfusion that may explain their symptoms.

MATERIALS AND METHODS: Fifteen patients with CFS were identified by means of retrospective review with an institutional review board-approved waiver of consent and waiver of authorization. Fourteen age- and sex-matched control subjects provided informed consent in accordance with the institutional review board and HIPAA. All subjects underwent 3.0-T volumetric T1-weighted magnetic resonance (MR) imaging, with two diffusion-tensor imaging (DTI) acquisitions and arterial spin labeling (ASL). Open source software was used to segment supratentorial gray and white matter and cerebrospinal fluid to compare gray and white matter volumes and cortical thickness. DTI data were processed with automated fiber quantification, which was used to compare piecewise fractional anisotropy (FA) along 20 tracks. For the volumetric analysis, a regression was performed to account for differences in age, handedness, and total intracranial volume, and for the DTI, FA was compared piecewise along tracks by using an unpaired t test. The open source software segmentation was used to compare cerebral blood flow as measured with ASL.

RESULTS: In the CFS population, FA was increased in the right arcuate fasciculus (P = .0015), and in right-handers, FA was also increased in the right inferior longitudinal fasciculus (ILF) (P = .0008). In patients with CFS, right anterior arcuate FA increased with disease severity (r = 0.649, P = .026). Bilateral white matter volumes were reduced in CFS (mean ± standard deviation, 467 581 mm(3) ± 47 610 for patients vs 504 864 mm(3) ± 68 126 for control subjects, P = .0026), and cortical thickness increased in both right arcuate end points, the middle temporal (T = 4.25) and precentral (T = 6.47) gyri, and one right ILF end point, the occipital lobe (T = 5.36). ASL showed no significant differences.

CONCLUSION: Bilateral white matter atrophy is present in CFS. No differences in perfusion were noted. Right hemispheric increased FA may reflect degeneration of crossing fibers or strengthening of short-range fibers. Right anterior arcuate FA may serve as a biomarker for CFS.

(©) RSNA, 2014.

 

Source: Zeineh MM, Kang J, Atlas SW, Raman MM, Reiss AL, Norris JL, Valencia I, Montoya JG. Right arcuate fasciculus abnormality in chronic fatigue syndrome. Radiology. 2015 Feb;274(2):517-26. doi: 10.1148/radiol.14141079. Epub 2014 Oct 29. https://www.ncbi.nlm.nih.gov/pubmed/25353054

 

A brain MRI study of chronic fatigue syndrome: evidence of brainstem dysfunction and altered homeostasis

Abstract:

To explore brain involvement in chronic fatigue syndrome (CFS), the statistical parametric mapping of brain MR images has been extended to voxel-based regressions against clinical scores.

Using SPM5 we performed voxel-based morphometry (VBM) and analysed T(1) – and T(2) -weighted spin-echo MR signal levels in 25 CFS subjects and 25 normal controls (NC). Clinical scores included CFS fatigue duration, a score based on the 10 most common CFS symptoms, the Bell score, the hospital anxiety and depression scale (HADS) anxiety and depression, and hemodynamic parameters from 24-h blood pressure monitoring. We also performed group × hemodynamic score interaction regressions to detect locations where MR regressions were opposite for CFS and NC, thereby indicating abnormality in the CFS group.

In the midbrain, white matter volume was observed to decrease with increasing fatigue duration. For T(1) -weighted MR and white matter volume, group × hemodynamic score interactions were detected in the brainstem [strongest in midbrain grey matter (GM)], deep prefrontal white matter (WM), the caudal basal pons and hypothalamus. A strong correlation in CFS between brainstem GM volume and pulse pressure suggested impaired cerebrovascular autoregulation.

It can be argued that at least some of these changes could arise from astrocyte dysfunction. These results are consistent with an insult to the midbrain at fatigue onset that affects multiple feedback control loops to suppress cerebral motor and cognitive activity and disrupt local CNS homeostasis, including resetting of some elements of the autonomic nervous system (ANS).

Copyright © 2011 John Wiley & Sons, Ltd.

 

Source: Barnden LR, Crouch B, Kwiatek R, Burnet R, Mernone A, Chryssidis S, Scroop G, Del Fante P. A brain MRI study of chronic fatigue syndrome: evidence of brainstem dysfunction and altered homeostasis. NMR Biomed. 2011 Dec;24(10):1302-12. doi: 10.1002/nbm.1692. Epub 2011 May 11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369126/ (Full article)