Brain and cognitive changes in patients with long COVID compared with infection-recovered control subjects

Abstract:

Between 2.5 and 28% of people infected with SARS-CoV-2 suffer Long COVID or persistence of symptoms for months after acute illness. Many symptoms are neurological, but the brain changes underlying the neuropsychological impairments remain unclear. This study aimed to provide a detailed description of the cognitive profile, the pattern of brain alterations in Long COVID and the potential association between them.

To address these objectives, 83 patients with persistent neurological symptoms after COVID-19 were recruited, and 22 now healthy controls chosen because they had suffered COVID-19 but did not experience persistent neurological symptoms. Patients and controls were matched for age, sex and educational level. All participants were assessed by clinical interview, comprehensive standardized neuropsychological tests and structural MRI. The mean global cognitive function of patients with Long COVID assessed by ACE III screening test (Overall Cognitive level – OCLz= -0.39± 0.12) was significantly below the infection recovered-controls (OCLz= +0.32± 0.16, p< 0.01).

We observed that 48% of patients with Long COVID had episodic memory deficit, with 27% also impaired overall cognitive function, especially attention, working memory, processing speed and verbal fluency. The MRI examination included grey matter morphometry and whole brain structural connectivity analysis. Compared to infection recovered controls, patients had thinner cortex in a specific cluster centred on the left posterior superior temporal gyrus.

In addition, lower fractional anisotropy (FA) and higher radial diffusivity (RD) were observed in widespread areas of the patients’ cerebral white matter relative to these controls. Correlations between cognitive status and brain abnormalities revealed a relationship between altered connectivity of white matter regions and impairments of episodic memory, overall cognitive function, attention and verbal fluency.

This study shows that patients with neurological Long COVID suffer brain changes, especially in several white matter areas, and these are associated with impairments of specific cognitive functions.

Source: Serrano Del Pueblo VM, Serrano-Heras G, Romero Sánchez CM, Piqueras Landete P, Rojas-Bartolome L, Feria I, Morris RGM, Strange B, Mansilla F, Zhang L, Castro-Robles B, Arias-Salazar L, López-López S, Payá M, Segura T, Muñoz-López M. Brain and cognitive changes in patients with long COVID compared with infection-recovered control subjects. Brain. 2024 Apr 2:awae101. doi: 10.1093/brain/awae101. Epub ahead of print. PMID: 38562097. https://pubmed.ncbi.nlm.nih.gov/38562097/

SARS-CoV2 evokes structural brain changes resulting in declined executive function

Abstract:

Background: Several research has underlined the multi-system character of COVID-19. Though effects on the Central Nervous System are mainly discussed as disease-specific affections due to the virus’ neurotropism, no comprehensive disease model of COVID-19 exists on a neurofunctional base by now. We aimed to investigate neuroplastic grey- and white matter changes related to COVID-19 and to link these changes to neurocognitive testings leading towards a multi-dimensional disease model.

Methods: Groups of acutely ill COVID-19 patients (n = 16), recovered COVID-19 patients (n = 21) and healthy controls (n = 13) were prospectively included into this study. MR-imaging included T1-weighted sequences for analysis of grey matter using voxel-based morphometry and diffusion-weighted sequences to investigate white matter tracts using probabilistic tractography. Comprehensive neurocognitive testing for verbal and non-verbal domains was performed.

Results: Alterations strongly focused on grey matter of the frontal-basal ganglia-thalamus network and temporal areas, as well as fiber tracts connecting these areas. In acute COVID-19 patients, a decline of grey matter volume was found with an accompanying diminution of white matter tracts. A decline in executive function and especially verbal fluency was found in acute patients, partially persisting in recovered.

Conclusion: Changes in gray matter volume and white matter tracts included mainly areas involved in networks of executive control and language. Deeper understanding of these alterations is necessary especially with respect to long-term impairments, often referred to as ‘Post-COVID’.

Source: Deuter D, Hense K, Kunkel K, Vollmayr J, Schachinger S, Wendl C, Schicho A, Fellner C, Salzberger B, Hitzenbichler F, Zeller J, Vielsmeier V, Dodoo-Schittko F, Schmidt NO, Rosengarth K. SARS-CoV2 evokes structural brain changes resulting in declined executive function. PLoS One. 2024 Mar 12;19(3):e0298837. doi: 10.1371/journal.pone.0298837. PMID: 38470899; PMCID: PMC10931481. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10931481/ (Full text)

Neuroinflammatory imaging markers in white matter: insights into the cerebral consequences of post-acute sequelae of COVID-19 (PASC)

Abstract:

Symptoms of coronavirus disease 2019 (COVID-19) can persist for months or years after infection, a condition called Post-Acute Sequelae of COVID-19 (PASC). Whole-brain white matter and cortical gray matter health were assessed using multi-shell diffusion tensor imaging. Correlational tractography was utilized to dissect the nature and extent of white matter changes.

In this study of 42 male essential workers, the most common symptoms of Neurological PASC (n = 24) included fatigue (n = 19) and headache (n = 17). Participants with neurological PASC demonstrated alterations to whole-brain white matter health when compared to controls made up of uninfected, asymptomatic, or mildly infected controls (n = 18). Large differences were evident between PASC and controls in measures of fractional anisotropy (Cohen’s D=-0.54, P = 0.001) and cortical isotropic diffusion (Cohen’s D = 0.50, P = 0.002).

Symptoms were associated with white matter fractional anisotropy (fatigue: rho = -0.62, P < 0.001; headache: rho = -0.66, P < 0.001), as well as nine other measures of white and gray matter health. Brain fog was associated with improved cerebral functioning including improved white matter isotropic diffusion and quantitative anisotropy.

This study identified changes across measures of white and gray matter connectivity, neuroinflammation, and cerebral atrophy that were interrelated and associated with differences in symptoms of PASC. These results provide insights into the long-term cerebral implications of COVID-19.

Source: Sean Clouston, Chuan Huang, Jia Ying et al. Neuroinflammatory imaging markers in white matter: insights into the cerebral consequences of post-acute sequelae of COVID-19 (PASC), 19 January 2024, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3760289/v1] https://www.researchsquare.com/article/rs-3760289/v1 (Full text)

Microstructural brain abnormalities, fatigue, and cognitive dysfunction after mild COVID-19

Abstract:

Although some studies have shown neuroimaging and neuropsychological alterations in post-COVID-19 patients, fewer combined neuroimaging and neuropsychology evaluations of individuals who presented a mild acute infection. Here we investigated cognitive dysfunction and brain changes in a group of mildly infected individuals.

We conducted a cross-sectional study of 97 consecutive subjects (median age of 41 years) without current or history of psychiatric symptoms (including anxiety and depression) after a mild infection, with a median of 79 days (and mean of 97 days) after diagnosis of COVID-19. We performed semi-structured interviews, neurological examinations, 3T-MRI scans, and neuropsychological assessments. For MRI analyses, we included a group of non-infected 77 controls. The MRI study included white matter (WM) investigation with diffusion tensor images (DTI) and functional connectivity with resting-state functional MRI (RS-fMRI).

The patients reported memory loss (36%), fatigue (31%) and headache (29%). The quantitative analyses confirmed symptoms of fatigue (83% of participants), excessive somnolence (35%), impaired phonemic verbal fluency (21%), impaired verbal categorical fluency (13%) and impaired logical memory immediate recall (16%). The WM analyses with DTI revealed higher axial diffusivity values in post-infected patients compared to controls.

Compared to controls, there were no significant differences in the functional connectivity of the posterior cingulum cortex. There were no significant correlations between neuropsychological scores and neuroimaging features (including DTI and RS-fMRI).

Our results suggest persistent cognitive impairment and subtle white matter abnormalities in individuals mildly infected without anxiety or depression symptoms. The longitudinal analyses will clarify whether these alterations are temporary or permanent.

Source: Scardua-Silva, L., Amorim da Costa, B., Karmann Aventurato, Í. et al. Microstructural brain abnormalities, fatigue, and cognitive dysfunction after mild COVID-19. Sci Rep 14, 1758 (2024). https://doi.org/10.1038/s41598-024-52005-7  https://www.nature.com/articles/s41598-024-52005-7 (Full text)

What lies beneath: White matter microstructure in pediatric myalgic encephalomyelitis/chronic fatigue syndrome using diffusion MRI

Abstract:

Recent studies in adults with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) suggest that changes in brain white matter microstructural organization may correlate with core ME/CFS symptoms, and represent a potential biomarker of disease. However, this has yet to be investigated in the pediatric ME/CFS population. We examined group differences in macrostructural and microstructural white matter properties, and their relationship with clinical measures, between adolescents recently diagnosed with ME/CFS and healthy controls.

Forty-eight adolescents (25 ME/CFS, 23 controls, mean age 16 years) underwent brain diffusion MRI, and a robust multi-analytic approach was used to evaluate white and gray matter volume, regional brain volume, cortical thickness, fractional anisotropy, mean/axial/radial diffusivity, neurite dispersion and density, fiber density, and fiber cross section.

From a clinical perspective, adolescents with ME/CFS showed greater fatigue and pain, poorer sleep quality, and poorer performance on cognitive measures of processing speed and sustained attention compared with controls. However, no significant group differences in white matter properties were observed, with the exception of greater white matter fiber cross section of the left inferior longitudinal fasciculus in the ME/CFS group compared with controls, which did not survive correction for intracranial volume.

Overall, our findings suggest that white matter abnormalities may not be predominant in pediatric ME/CFS in the early stages following diagnosis. The discrepancy between our null findings and white matter abnormalities identified in the adult ME/CFS literature could suggest that older age and/or longer illness duration influence changes in brain structure and brain-behavior relationships that are not yet established in adolescence.

Source: Josev EK, Chen J, Seal M, Scheinberg A, Cole RC, Rowe K, Lubitz L, Knight SJ. What lies beneath: White matter microstructure in pediatric myalgic encephalomyelitis/chronic fatigue syndrome using diffusion MRI. J Neurosci Res. 2023 Jun 18. doi: 10.1002/jnr.25223. Epub ahead of print. PMID: 37331007. https://onlinelibrary.wiley.com/doi/10.1002/jnr.25223 (Full text)

Brain imaging and neuropsychological assessment of individuals recovered from a mild to moderate SARS-CoV-2 infection

Abstract:

As severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infections have been shown to affect the central nervous system, the investigation of associated alterations of brain structure and neuropsychological sequelae is crucial to help address future health care needs. Therefore, we performed a comprehensive neuroimaging and neuropsychological assessment of 223 nonvaccinated individuals recovered from a mild to moderate SARS-CoV-2 infection (100 female/123 male, age [years], mean ± SD, 55.54 ± 7.07; median 9.7 mo after infection) in comparison with 223 matched controls (93 female/130 male, 55.74 ± 6.60) within the framework of the Hamburg City Health Study.
Primary study outcomes were advanced diffusion MRI measures of white matter microstructure, cortical thickness, white matter hyperintensity load, and neuropsychological test scores. Among all 11 MRI markers tested, significant differences were found in global measures of mean diffusivity (MD) and extracellular free water which were elevated in the white matter of post-SARS-CoV-2 individuals compared to matched controls (free water: 0.148 ± 0.018 vs. 0.142 ± 0.017, < 0.001; MD [10−3 mm2/s]: 0.747 ± 0.021 vs. 0.740 ± 0.020, < 0.001). Group classification accuracy based on diffusion imaging markers was up to 80%. Neuropsychological test scores did not significantly differ between groups.
Collectively, our findings suggest that subtle changes in white matter extracellular water content last beyond the acute infection with SARS-CoV-2. However, in our sample, a mild to moderate SARS-CoV-2 infection was not associated with neuropsychological deficits, significant changes in cortical structure, or vascular lesions several months after recovery. External validation of our findings and longitudinal follow-up investigations are needed.

Significance:

In this case–control study, we demonstrate that non-vaccinated individuals recovered from a mild to moderate severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection show significant alterations of the cerebral white matter identified by diffusion-weighted imaging, such as global increases in extracellular free water and mean diffusivity. Despite the observed brain white matter alterations in this sample, a mild to moderate SARS-CoV-2 infection was not associated with worse cognitive functions within the first year after recovery. Collectively, our findings indicate the presence of a prolonged neuroinflammatory response to the initial viral infection. Further longitudinal research is necessary to elucidate the link between brain alterations and clinical features of post-SARS-CoV-2 individuals.
Source: Marvin Petersen, Felix Leonard Nägele, Carola Mayer, and Bastian Cheng. Brain imaging and neuropsychological assessment of individuals recovered from a mild to moderate SARS-CoV-2 infection. Neuroscience, May 23, 2023, 120 (22) e2217232120 https://doi.org/10.1073/pnas.2217232120 (Full text)

Dynamic white matter changes in recovered COVID-19 patients: a two-year follow-up study

Abstract:

Background and purpose: Long COVID with regard to the neurological system deserves more attention, as a surge of treated patients are being discharged from the hospital. As the dynamic changes in white matter after two years remain unknown, this characteristic was the focus of this study.

Methods: We investigated 17 recovered COVID-19 patients at two years after discharge. Diffusion tensor imaging, neurite orientation dispersion and density imaging were performed to identify white matter integrity and changes from one to two years after discharge. Data for 13 revisited healthy controls were collected as a reference. Subscales of the Wechsler Intelligence scale were used to assess cognitive function. Repeated-measures ANOVA was used to detect longitudinal changes in 17 recovered COVID-19 patients and 13 healthy controls after one-year follow-up. Correlations between diffusion metrics, cognitive function, and other clinical characteristics (i.e., inflammatory factors) were also analyzed.

Results: Longitudinal analysis showed the recovery trends of large-scale brain regions, with small-scale brain region deterioration from one year to two years after SARS-CoV-2 infection. However, persistent white matter abnormalities were noted at two years after discharge. Longitudinal changes of cognitive function showed no group difference. But cross-sectional cognitive difference between recovered COVID-19 patients and revisited HCs was detected. Inflammation levels in the acute stage correlated positively with white matter abnormalities and negatively with cognitive function. Moreover, the more abnormal the white matter was at two years, the greater was the cognitive deficit present.

Conclusion: Recovered COVID-19 patients showed longitudinal recovery trends of white matter. But also had persistent white matter abnormalities at two years after discharge. Inflammation levels in the acute stage may be considered predictors of cognition and white matter integrity, and the white matter microstructure acts as a biomarker of cognitive function in recovered COVID-19 patients. These findings provide an objective basis for early clinical intervention.

Source: Huang S, Zhou X, Zhao W, Du Y, Yang D, Huang Y, Chen Y, Zhang H, Yang G, Liu J, Luo H. Dynamic white matter changes in recovered COVID-19 patients: a two-year follow-up study. Theranostics. 2023 Jan 1;13(2):724-735. doi: 10.7150/thno.79902. PMID: 36632218; PMCID: PMC9830428. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830428/ (Full text)

Diffusion tensor imaging reveals neuronal microstructural changes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic Encephalomyelitis/Chronic fatigue syndrome (ME/CFS) patients suffer from a variety of physical and neurological complaints indicating the central nervous system plays a role in ME/CFS pathophysiology. Diffusion tensor imaging (DTI) has been used to study microstructural changes in neurodegenerative diseases. In this study, we evaluated DTI parameters to investigate microstructural abnormalities in ME/CFS patients.

We estimated DTI parameters in 25 ME/CFS patients who met Fukuda criteria (ME/CFSFukuda ), 18 ME/CFS patients who met International Consent Criteria (ICC) (ME/CFSICC ) only, and 26 healthy control subjects (HC). In addition to voxel-based DTI-parameter group comparisons, we performed voxel-based DTI-parameter interaction-with-group regressions with clinical and autonomic measures to test for abnormal regressions.

Group comparisons between ME/CFSICC and HC detected significant clusters (a) with decreased axial diffusivity (p=0.001) and mean diffusivity (p=0.01) in the descending cortico-cerebellar tract in the midbrain and pons, and (b) with increased transverse diffusivity in the medulla. The mode of anisotropy was significantly decreased (p=0.001) in a cluster in the superior longitudinal fasciculus region. Voxel-based group comparisons between ME/CFSFukuda and HC did not detect significant clusters. For ME/CFSICC and HC, DTI parameter interaction-with-group regressions were abnormal for the clinical measures of information processing score, SF36 physical, sleep disturbance score, and respiration rate in both grey and white matter regions.

Our study demonstrated that DTI parameters are sensitive to microstructural changes in ME/CFSICC and could potentially act as an imaging biomarker of abnormal pathophysiology in ME/CFS. The study also shows that strict case definitions are essential in investigation of the pathophysiology of ME/CFS.

Source: Thapaliya K, Marshall-Gradisnik S, Staines D, Barnden L. Diffusion tensor imaging reveals neuronal microstructural changes in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Eur J Neurosci. 2021 Aug 6. doi: 10.1111/ejn.15413. Epub ahead of print. PMID: 34355438. https://pubmed.ncbi.nlm.nih.gov/34355438/

Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome

Abstract:

Autonomic changes are often associated with the chronic fatigue syndrome (CFS), but their pathogenetic role is unclear and brain imaging investigations are lacking. The vasomotor centre and, through it, nuclei in the midbrain and hypothalamus play a key role in autonomic nervous system regulation of steady state blood pressure (BP) and heart rate (HR).

In this exploratory cross-sectional study, BP and HR, as indicators of autonomic function, were correlated with volumetric and T1- and T2-weighted spin-echo (T1w and T2w) brain MRI in 25 CFS subjects and 25 normal controls (NC). Steady state BP (systolic, diastolic and pulse pressure) and HR in two postures were extracted from 24 h blood pressure monitoring. We performed (1) MRI versus autonomic score interaction-with-group regressions to detect locations where regression slopes differed in the CFS and NC groups (collectively indicating abnormality in CFS), and (2) MRI regressions in the CFS and NC groups alone to detect additional locations with abnormal correlations in CFS.

Significant CFS regressions were repeated controlling for anxiety and depression (A&D). Abnormal regressions were detected in nuclei of the brainstem vasomotor centre, midbrain reticular formation and hypothalamus, but also in limbic nuclei involved in stress responses and in prefrontal white matter. Group comparisons of CFS and NC did not find MRI differences in these locations.

We propose therefore that these regulatory nuclei are functioning correctly, but that two-way communication between them is impaired in CFS and this affects signalling to/from peripheral effectors/sensors, culminating in inverted or magnified correlations. This single explanation for the diverse abnormal correlations detected here consolidates the conclusion for a brainstem/midbrain nerve conduction deficit inferred earlier (Barnden et al., 2015). Strong correlations were also detected in isolated NC regressions.

 

Source: Barnden LR, Kwiatek R, Crouch B, Burnet R, Del Fante P. Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome. Neuroimage Clin. 2016 Mar 31;11:530-7. doi: 10.1016/j.nicl.2016.03.017. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833047/ (Full article)

 

Neuropsychology of chronic fatigue syndrome: a critical review

Abstract:

This article provides a comprehensive and critical review of the neuropsychological and related literature on chronic fatigue syndrome (CFS). Despite the methodological limitations observed in several studies, some consistent findings are noted.

The most consistently documented neuropsychological impairments are in the areas of complex information processing speed and efficiency. General intellectual abilities and higher order cognitive skills are intact. Emotional factors influence subjective report of cognitive difficulty, whereas their effect on objective performance remains uncertain.

Although the neuropathological processes underlying cognitive dysfunction in CFS are not yet known, preliminary evidence suggests the involvement of cerebral white matter. Directions for future research are outlined.

 

Source: Tiersky LA, Johnson SK, Lange G, Natelson BH, DeLuca J. Neuropsychology of chronic fatigue syndrome: a critical review. J Clin Exp Neuropsychol. 1997 Aug;19(4):560-86. http://www.ncbi.nlm.nih.gov/pubmed/9342690