Viral persistence, reactivation, and mechanisms of long COVID

Abstract:

The COVID-19 global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has infected hundreds of millions of individuals. Following COVID-19 infection, a subset can develop a wide range of chronic symptoms affecting diverse organ systems referred to as post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. A National Institutes of Health-sponsored initiative, RECOVER: Researching COVID to Enhance Recovery, has sought to understand the basis of long COVID in a large cohort. Given the range of symptoms that occur in long COVID, the mechanisms that may underlie these diverse symptoms may also be diverse.

In this review, we focus on the emerging literature supporting the role(s) that viral persistence or reactivation of viruses may play in PASC. Persistence of SARS-CoV-2 RNA or antigens is reported in some organs, yet the mechanism by which they do so and how they may be associated with pathogenic immune responses is unclear. Understanding the mechanisms of persistence of RNA, antigen or other reactivated viruses and how they may relate to specific inflammatory responses that drive symptoms of PASC may provide a rationale for treatment.

Source: Chen B, Julg B, Mohandas S, Bradfute SB; RECOVER Mechanistic Pathways Task Force. Viral persistence, reactivation, and mechanisms of long COVID. Elife. 2023 May 4;12:e86015. doi: 10.7554/eLife.86015. PMID: 37140960; PMCID: PMC10159620. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159620/ (Full text)

Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC)

Abstract:

COVID-19, with persistent and new onset of symptoms such as fatigue, post-exertional malaise, and cognitive dysfunction that last for months and impact everyday functioning, is referred to as Long COVID under the general category of post-acute sequelae of SARS-CoV-2 infection (PASC). PASC is highly heterogenous and may be associated with multisystem tissue damage/dysfunction including acute encephalitis, cardiopulmonary syndromes, fibrosis, hepatobiliary damages, gastrointestinal dysregulation, myocardial infarction, neuromuscular syndromes, neuropsychiatric disorders, pulmonary damage, renal failure, stroke, and vascular endothelial dysregulation. A better understanding of the pathophysiologic mechanisms underlying PASC is essential to guide prevention and treatment.

This review addresses potential mechanisms and hypotheses that connect SARS-CoV-2 infection to long-term health consequences. Comparisons between PASC and other virus-initiated chronic syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome will be addressed. Aligning symptoms with other chronic syndromes and identifying potentially regulated common underlining pathways may be necessary for understanding the true nature of PASC.

The discussed contributors to PASC symptoms include sequelae from acute SARS-CoV-2 injury to one or more organs, persistent reservoirs of the replicating virus or its remnants in several tissues, re-activation of latent pathogens such as Epstein-Barr and herpes viruses in COVID-19 immune-dysregulated tissue environment, SARS-CoV-2 interactions with host microbiome/virome communities, clotting/coagulation dysregulation, dysfunctional brainstem/vagus nerve signaling, dysautonomia or autonomic dysfunction, ongoing activity of primed immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. The individualized nature of PASC symptoms suggests that different therapeutic approaches may be required to best manage specific patients.

Source: Sherif ZA, Gomez CR, Connors TJ, Henrich TJ, Reeves WB; RECOVER Mechanistic Pathway Task Force. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC). Elife. 2023 Mar 22;12:e86002. doi: 10.7554/eLife.86002. PMID: 36947108; PMCID: PMC10032659. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10032659/ (Full text)

Systematic review with meta-analysis of active herpesvirus infections in patients with COVID-19: Old players on the new field

Abstract:

Objectives: Herpesviruses are ubiquitous and after primary infection they establish lifelong latency. The impairment of maintaining latency with short-term or long-term consequences could be triggered by other infection. Therefore, reactivation of herpesviruses in COVID-19 patients represents an emerging issue.

Design and methods: This study provided the first systematic review with meta-analysis of studies that evaluated active human herpesvirus (HHV) infection (defined as the presence of IgM antibodies or HHV-DNA) in COVID-19 patients and included 36 publications collected by searching through PubMed, SCOPUS, and Web of science until November 2022.

Results: The prevalence of active EBV, HHV6, HSV, CMV, HSV1, and VZV infection in COVID-19 population was 41% (95% CI =27%-57%),3% (95% CI=17%-54%),28% (95% CI=1%-85%),25% (95% CI=1%-63%),22% (95% CI=10%-35%),and 18% (95% CI=4%-34%),respectively. There was a 6 times higher chance for active EBV infection in patients with severe COVID-19 than in non-COVID-19 controls (OR=6.45, 95% CI=1.09-38.13, p=0.040), although there was no difference in the prevalence of all evaluated active herpesvirus infections between COVID-19 patients and non-COVID-19 controls.

Conclusions: Future research of herpesvirus and SARS-CoV-2 coinfections must be prioritized to define: who, when and how to be tested, as well as how to effectively treat HHVs reactivations in acute and long COVID-19 patients.

Source: Banko A, Miljanovic D, Cirkovic A. Systematic review with meta-analysis of active herpesvirus infections in patients with COVID-19: Old players on the new field. Int J Infect Dis. 2023 Jan 31:S1201-9712(23)00037-1. doi: 10.1016/j.ijid.2023.01.036. Epub ahead of print. PMID: 36736577; PMCID: PMC9889115. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889115/ (Full text)

Persistent SARS-CoV-2 Infection, EBV, HHV-6 and Other Factors May Contribute to Inflammation and Autoimmunity in Long COVID

Abstract:

A novel syndrome called long-haul COVID or long COVID is increasingly recognized in a significant percentage of individuals within a few months after infection with SARS-CoV-2. This disorder is characterized by a wide range of persisting, returning or even new but related symptoms that involve different tissues and organs, including respiratory, cardiac, vascular, gastrointestinal, musculo-skeletal, neurological, endocrine and systemic.
Some overlapping symptomatologies exist between long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Very much like with long ME/CFS, infections with herpes family viruses, immune dysregulation, and the persistence of inflammation have been reported as the most common pattern for the development of long COVID.
This review describes several factors and determinants of long COVID that have been proposed, elaborating mainly on viral persistence, reactivation of latent viruses such as Epstein–Barr virus and human herpesvirus 6 which are also associated with the pathology of ME/CFS, viral superantigen activation of the immune system, disturbance in the gut microbiome, and multiple tissue damage and autoimmunity.
Based on these factors, we propose diagnostic strategies such as the measurement of IgG and IgM antibodies against SARS-CoV-2, EBV, HHV-6, viral superantigens, gut microbiota, and biomarkers of autoimmunity to better understand and manage this multi-factorial disorder that continues to affect millions of people in the world.
Source: Vojdani A, Vojdani E, Saidara E, Maes M. Persistent SARS-CoV-2 Infection, EBV, HHV-6 and Other Factors May Contribute to Inflammation and Autoimmunity in Long COVID. Viruses. 2023; 15(2):400. https://doi.org/10.3390/v15020400 https://www.mdpi.com/1999-4915/15/2/400 (Full text)

Chronic viral coinfections differentially affect the likelihood of developing long COVID

Abstract:

BACKGROUND. The presence and reactivation of chronic viral infections, such as EBV, CMV, and HIV, have been proposed as potential contributors to long COVID (LC), but studies in well-characterized postacute cohorts of individuals with COVID-19 over a longer time course consistent with current case definitions of LC are limited.

METHODS. In a cohort of 280 adults with prior SARS-CoV-2 infection, we assessed the presence and types of LC symptoms and prior medical history (including COVID-19 history and HIV status) and performed serological testing for EBV and CMV using a commercial laboratory. We used covariate-adjusted binary logistic regression models to identify independent associations between variables and LC symptoms.

RESULTS. We observed that LC symptoms, such as fatigue and neurocognitive dysfunction, at a median of 4 months following initial diagnosis were independently associated with serological evidence suggesting recent EBV reactivation (early antigen–diffuse IgG positivity) or high nuclear antigen (EBNA) IgG levels but not with ongoing EBV viremia. Serological evidence suggesting recent EBV reactivation (early antigen–diffuse IgG positivity) was most strongly associated with fatigue (OR = 2.12). Underlying HIV infection was also independently associated with neurocognitive LC (OR = 2.5). Interestingly, participants who had serologic evidence of prior CMV infection were less likely to develop neurocognitive LC (OR = 0.52).

CONCLUSION. Overall, these findings suggest differential effects of chronic viral coinfections on the likelihood of developing LC and association with distinct syndromic patterns. Further assessment during the acute phase of COVID-19 is warranted.

Source: Peluso MJ, Deveau TM, Munter SE, Ryder D, Buck A, Beck-Engeser G, Chan F, Lu S, Goldberg SA, Hoh R, Tai V, Torres L, Iyer NS, Deswal M, Ngo LH, Buitrago M, Rodriguez A, Chen JY, Yee BC, Chenna A, Winslow JW, Petropoulos CJ, Deitchman AN, Hellmuth J, Spinelli MA, Durstenfeld MS, Hsue PY, Kelly JD, Martin JN, Deeks SG, Hunt PW, Henrich TJ. Chronic viral coinfections differentially affect the likelihood of developing long COVID. J Clin Invest. 2023 Feb 1;133(3):e163669. doi: 10.1172/JCI163669. PMID: 36454631. https://www.jci.org/articles/view/163669 (Full text)

Selective inhibition of miRNA processing by a herpesvirus-encoded miRNA

Abstract:

Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation1,2. A long appreciated, yet undefined relationship exists between the lytic-latent switch and viral non-coding RNAs3,4. Here we identify viral microRNA (miRNA)-mediated inhibition of host miRNA processing as a cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defences and drive the switch from latent to lytic virus infection.

We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective primary (pri)-miRNA hairpin loops. Subsequent loss of miR-30 and activation of the miR-30-p53-DRP1 axis triggers a profound disruption of mitochondrial architecture. This impairs induction of type I interferons and is necessary for both productive infection and virus reactivation.

Ectopic expression of miR-aU14 triggered virus reactivation from latency, identifying viral miR-aU14 as a readily druggable master regulator of the herpesvirus lytic-latent switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 will provide new therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders.

Source: Hennig T, Prusty AB, Kaufer BB, Whisnant AW, Lodha M, Enders A, Thomas J, Kasimir F, Grothey A, Klein T, Herb S, Jürges C, Sauer M, Fischer U, Rudel T, Meister G, Erhard F, Dölken L, Prusty BK. Selective inhibition of miRNA processing by a herpesvirus-encoded miRNA. Nature. 2022 May;605(7910):539-544. doi: 10.1038/s41586-022-04667-4. Epub 2022 May 4. PMID: 35508655.  https://pubmed.ncbi.nlm.nih.gov/35508655/

Impact of pre-existing chronic viral infection and reactivation on the development of long COVID

Abstract:

Background: The presence and reactivation of chronic viral infections such as Epstein-Barr virus (EBV), cytomegalovirus (CMV) and human immunodeficiency virus (HIV) have been proposed as potential contributors to Long COVID (LC), but studies in well-characterized post-acute cohorts of individuals with COVID-19 over a longer time course consistent with current case definitions of LC are limited.

Methods: In a cohort of 280 adults with prior SARS-CoV-2 infection, we assessed the presence and types of LC symptoms and prior medical history (including COVID-19 history and HIV status), and performed serological testing for EBV and CMV using a commercial laboratory. We used covariate-adjusted binary logistic regression models to identify independent associations between variables and LC symptoms.

Results: We observed that LC symptoms such as fatigue and neurocognitive dysfunction at a median of 4months following initial diagnosis were independently associated with serological evidence suggesting recent EBV reactivation (early antigen-D [EA-D] IgG positivity) or high nuclear antigen (EBNA) IgG levels, but not with ongoing EBV viremia. Serological evidence suggesting recent EBV reactivation (EA-D IgG) was most strongly associated with fatigue (OR 2.12). Underlying HIV infection was also independently associated with neurocognitive LC (OR 2.5). Interestingly, participants who had serologic evidence of prior CMV infection were less likely to develop neurocognitive LC (OR 0.52).

Conclusion: Overall, these findings suggest differential effects of chronic viral co-infections on the likelihood of developing LC and predicted distinct syndromic patterns. Further assessment during the acute phase of COVID-19 is warranted.

Trial registration: Long-term Impact of Infection with Novel Coronavirus (LIINC); NCT04362150FUNDING. This work was supported by the National Institute of Allergy and Infectious Diseases NIH/NIAID 3R01AI141003-03S1 to TJ Henrich, R01AI158013 to M Gandhi and M Spinelli, K24AI145806 to P Hunt, and by the Zuckerberg San Francisco Hospital Department of Medicine and Division of HIV, Infectious Diseases, and Global Medicine. MJP is supported on K23 A137522 and received support from the UCSFBay Area Center for AIDS Research (P30-AI027763).

Source: Peluso MJ, Deveau TM, Munter SE, Ryder DM, Buck AM, Beck-Engeser G, Chan F, Lu S, Goldberg SA, Hoh R, Tai V, Torres L, Iyer NS, Deswal M, Ngo LH, Buitrago M, Rodriguez AE, Chen JY, Yee BC, Chenna A, Winslow JW, Petropoulos CJ, Deitchman AN, Hellmuth J, Spinelli MA, Durstenfeld MS, Hsue PY, Kelly JD, Martin JN, Deeks SG, Hunt PW, Henrich TJ. Impact of pre-existing chronic viral infection and reactivation on the development of long COVID. J Clin Invest. 2022 Dec 1:e163669. doi: 10.1172/JCI163669. Epub ahead of print. PMID: 36454631. https://www.jci.org/articles/view/163669 (Full text)

Tissue specific signature of HHV-6 infection in ME/CFS

Abstract:

First exposure to various human herpesviruses (HHVs) including HHV-6, HCMV and EBV does not cause a life-threatening disease. In fact, most individuals are frequently unaware of their first exposure to such pathogens. These herpesviruses acquire lifelong latency in the human body where they show minimal genomic activity required for their survival. We hypothesized that it is not the latency itself but a timely, regionally restricted viral reactivation in a sub-set of host cells that plays a key role in disease development.

HHV-6 (HHV-6A and HHV-6B) and HHV-7 are unique HHVs that acquire latency by integration of the viral genome into sub-telomeric region of human chromosomes. HHV-6 reactivation has been linked to Alzheimer’s Disease, Chronic Fatigue Syndrome, and many other diseases. However, lack of viral activity in commonly tested biological materials including blood or serum strongly suggests tissue specific localization of active HHV-6 genome.

Here in this paper, we attempted to analyze active HHV-6 transcripts in postmortem tissue biopsies from a small cohort of ME/CFS patients and matched controls by fluorescence in situ hybridization using a probe against HHV-6 microRNA (miRNA), miR-aU14. Our results show abundant viral miRNA in various regions of the human brain and associated neuronal tissues including the spinal cord that is only detected in ME/CFS patients and not in controls.

Our findings provide evidence of tissue-specific active HHV-6 and EBV infection in ME/CFS, which along with recent work demonstrating a possible relationship between herpesvirus infection and ME/CFS, provide grounds for renewed discussion on the role of herpesviruses in ME/CFS.

Source: Prusty, Bhupesh K.; Kasimir, Francesca; Toomey, Danny; Liu, Zheng; Agnes Kaiping and Ariza, Maria Eugenia. Tissue specific signature of HHV-6 infection in ME/CFS. Front. Mol. Biosci. Sec. Molecular Diagnostics and Therapeutics. doi: 10.3389/fmolb.2022.1044964 https://www.frontiersin.org/articles/10.3389/fmolb.2022.1044964/abstract

HERV-W ENV antigenemia and correlation of increased anti-SARS-CoV-2 immunoglobulin levels with post-COVID-19 symptoms

Abstract:

Due to the wide scope and persistence of COVID-19´s pandemic, post-COVID-19 condition represents a post-viral syndrome of unprecedented dimensions. SARS-CoV-2, in line with other infectious agents, has the capacity to activate dormant human endogenous retroviral sequences ancestrally integrated in human genomes (HERVs). This activation was shown to relate to aggravated COVID-19 patient´s symptom severity.

Despite our limited understanding of how HERVs are turned off upon infection clearance, or how HERVs mediate long-term effects when their transcription remains aberrantly on, the participation of these elements in neurologic disease, such as multiple sclerosis, is already settling the basis for effective therapeutic solutions. These observations support an urgent need to identify the mechanisms that lead to HERV expression with SARS-CoV-2 infection, on the one hand, and to answer whether persistent HERV expression exists in post-COVID-19 condition, on the other.

The present study shows, for the first time, that the HERV-W ENV protein can still be actively expressed long after SARS-CoV-2 infection is resolved in post-COVID-19 condition patients. Moreover, increased anti-SARS-CoV-2 immunoglobulins in post-COVID-19 condition, particularly high anti-SARS-CoV-2 immunoglobulin levels of the E isotype (IgE), seem to strongly correlate with deteriorated patient physical function (r=-0.8057, p<0.01).

These results indicate that HERV-W ENV antigenemia and anti-SARS-CoV-2 IgE serology should be further studied to better characterize post-COVID-19 condition pathogenic drivers potentially differing in subsets of patients with various symptoms. They also point out that such biomarkers may serve to design therapeutic options for precision medicine in post-COVID-19 condition.

Source: Giménez-Orenga K, Pierquin J, Brunel J, Charvet B, Martín-Martínez E, Perron H, Oltra E. HERV-W ENV antigenemia and correlation of increased anti-SARS-CoV-2 immunoglobulin levels with post-COVID-19 symptoms. Front Immunol. 2022 Oct 27;13:1020064. doi: 10.3389/fimmu.2022.1020064. PMID: 36389746; PMCID: PMC9647063.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647063/ (Full text)

Saliva antibody-fingerprint of reactivated latent viruses after mild/asymptomatic COVID-19 is unique in patients with myalgic-encephalomyelitis/chronic fatigue syndrome

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic disease considered to be triggered by viral infections in a majority of cases. Symptoms overlap largely with those of post-acute sequelae of COVID-19/long-COVID implying common pathogenetic mechanisms. SARS-CoV-2 infection is risk factor for sustained latent virus reactivation that may account for the symptoms of post-viral fatigue syndromes. The aim of this study was first to investigate whether patients with ME/CFS and healthy donors (HDs) differed in their antibody response to mild/asymptomatic SARS-CoV-2 infection. Secondly, to analyze whether COVID-19 imposes latent virus reactivation in the cohorts.

Methods: Anti-SARS-CoV-2 antibodies were analyzed in plasma and saliva from non-vaccinated ME/CFS (n=95) and HDs (n=110) using soluble multiplex immunoassay. Reactivation of human herpesviruses 1-6 (HSV1, HSV2, VZV, EBV, CMV, HHV6), and human endogenous retrovirus K (HERV-K) was detected by anti-viral antibody fingerprints in saliva.

Results: At 3-6 months after mild/asymptomatic SARS-CoV-2 infection, virus-specific antibodies in saliva were substantially induced signifying a strong reactivation of latent viruses (EBV, HHV6 and HERV-K) in both cohorts. In patients with ME/CFS, antibody responses were significantly stronger, in particular EBV-encoded nuclear antigen-1 (EBNA1) IgG were elevated in patients with ME/CFS, but not in HDs. EBV-VCA IgG was also elevated at baseline prior to SARS-infection in patients compared to HDs.

Conclusion: Our results denote an altered and chronically aroused anti-viral profile against latent viruses in ME/CFS. SARS-CoV-2 infection even in its mild/asymptomatic form is a potent trigger for reactivation of latent herpesviruses (EBV, HHV6) and endogenous retroviruses (HERV-K), as detected by antibody fingerprints locally in the oral mucosa (saliva samples). This has not been shown before because the antibody elevation is not detected systemically in the circulation/plasma.

Source: Apostolou Eirini, Rizwan Muhammad, Moustardas Petros, Sjögren Per, Bertilson Bo Christer, Bragée Björn, Polo Olli, Rosén Anders. Saliva antibody-fingerprint of reactivated latent viruses after mild/asymptomatic COVID-19 is unique in patients with myalgic-encephalomyelitis/chronic fatigue syndrome. Frontiers in Immunology, Vol 13, 2022. https://www.frontiersin.org/articles/10.3389/fimmu.2022.949787/full (Full text)