Neuroinflammation in post-acute sequelae of COVID-19 (PASC) as assessed by [11C]PBR28 PET correlates with vascular disease measures

Abstract:

The COVID-19 pandemic caused by SARS-CoV-2 has triggered a consequential public health crisis of post-acute sequelae of COVID-19 (PASC), sometimes referred to as long COVID. The mechanisms of the heterogeneous persistent symptoms and signs that comprise PASC are under investigation, and several studies have pointed to the central nervous and vascular systems as being potential sites of dysfunction.

In the current study, we recruited individuals with PASC with diverse symptoms, and examined the relationship between neuroinflammation and circulating markers of vascular dysfunction. We used [11C]PBR28 PET neuroimaging, a marker of neuroinflammation, to compare 12 PASC individuals versus 43 normative healthy controls.

We found significantly increased neuroinflammation in PASC versus controls across a wide swath of brain regions including midcingulate and anterior cingulate cortex, corpus callosum, thalamus, basal ganglia, and at the boundaries of ventricles. We also collected and analyzed peripheral blood plasma from the PASC individuals and found significant positive correlations between neuroinflammation and several circulating analytes related to vascular dysfunction.

These results suggest that an interaction between neuroinflammation and vascular health may contribute to common symptoms of PASC.

Source: Michael B VanElzakkerHannah F BuesLudovica BrusaferriMinhae KimDeena SaadiEva-Maria RataiDarin D DoughertyMarco L Loggia. Neuroinflammation in post-acute sequelae of COVID-19 (PASC) as assessed by [11C]PBR28 PET correlates with vascular disease measures. https://www.biorxiv.org/content/10.1101/2023.10.19.563117v1 (Full text available as PDF file)

SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC)

Abstract:

Millions of people are suffering from Long COVID or post-acute sequelae of COVID-19 (PASC). Several biological factors have emerged as potential drivers of PASC pathology. Some individuals with PASC may not fully clear the coronavirus SARS-CoV-2 after acute infection. Instead, replicating virus and/or viral RNA-potentially capable of being translated to produce viral proteins-persist in tissue as a ‘reservoir’. This reservoir could modulate host immune responses or release viral proteins into the circulation.

Here we review studies that have identified SARS-CoV-2 RNA/protein or immune responses indicative of a SARS-CoV-2 reservoir in PASC samples. Mechanisms by which a SARS-CoV-2 reservoir may contribute to PASC pathology, including coagulation, microbiome and neuroimmune abnormalities, are delineated. We identify research priorities to guide the further study of a SARS-CoV-2 reservoir in PASC, with the goal that clinical trials of antivirals or other therapeutics with potential to clear a SARS-CoV-2 reservoir are accelerated.

Source: Proal AD, VanElzakker MB, Aleman S, Bach K, Boribong BP, Buggert M, Cherry S, Chertow DS, Davies HE, Dupont CL, Deeks SG, Eimer W, Ely EW, Fasano A, Freire M, Geng LN, Griffin DE, Henrich TJ, Iwasaki A, Izquierdo-Garcia D, Locci M, Mehandru S, Painter MM, Peluso MJ, Pretorius E, Price DA, Putrino D, Scheuermann RH, Tan GS, Tanzi RE, VanBrocklin HF, Yonker LM, Wherry EJ. SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). Nat Immunol. 2023 Sep 4. doi: 10.1038/s41590-023-01601-2. Epub ahead of print. PMID: 37667052. https://www.nature.com/articles/s41590-023-01601-2 (Full text)

Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms

Abstract:

The novel virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic of coronavirus disease 2019 (COVID-19). Across the globe, a subset of patients who sustain an acute SARS-CoV-2 infection are developing a wide range of persistent symptoms that do not resolve over the course of many months. These patients are being given the diagnosis Long COVID or Post-acute sequelae of COVID-19 (PASC). It is likely that individual patients with a PASC diagnosis have different underlying biological factors driving their symptoms, none of which are mutually exclusive.

This paper details mechanisms by which RNA viruses beyond just SARS-CoV-2 have be connected to long-term health consequences. It also reviews literature on acute COVID-19 and other virus-initiated chronic syndromes such as post-Ebola syndrome or myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) to discuss different scenarios for PASC symptom development. Potential contributors to PASC symptoms include consequences from acute SARS-CoV-2 injury to one or multiple organs, persistent reservoirs of SARS-CoV-2 in certain tissues, re-activation of neurotrophic pathogens such as herpesviruses under conditions of COVID-19 immune dysregulation, SARS-CoV-2 interactions with host microbiome/virome communities, clotting/coagulation issues, dysfunctional brainstem/vagus nerve signaling, ongoing activity of primed immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. The individualized nature of PASC symptoms suggests that different therapeutic approaches may be required to best manage care for specific patients with the diagnosis

Source: Proal AD, VanElzakker MB. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front Microbiol. 2021 Jun 23;12:698169. doi: 10.3389/fmicb.2021.698169. PMID: 34248921; PMCID: PMC8260991. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260991/ (Full study)

Neuroinflammation and Cytokines in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Critical Review of Research Methods

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is the label given to a syndrome that can include long-term flu-like symptoms, profound fatigue, trouble concentrating, and autonomic problems, all of which worsen after exertion. It is unclear how many individuals with this diagnosis are suffering from the same condition or have the same underlying pathophysiology, and the discovery of biomarkers would be clarifying.

The name “myalgic encephalomyelitis” essentially means “muscle pain related to central nervous system inflammation” and many efforts to find diagnostic biomarkers have focused on one or more aspects of neuroinflammation, from periphery to brain. As the field uncovers the relationship between the symptoms of this condition and neuroinflammation, attention must be paid to the biological mechanisms of neuroinflammation and issues with its potential measurement.

The current review focuses on three methods used to study putative neuroinflammation in ME/CFS: (1) positron emission tomography (PET) neuroimaging using translocator protein (TSPO) binding radioligand (2) magnetic resonance spectroscopy (MRS) neuroimaging and (3) assays of cytokines circulating in blood and cerebrospinal fluid. PET scanning using TSPO-binding radioligand is a promising option for studies of neuroinflammation. However, methodological difficulties that exist both in this particular technique and across the ME/CFS neuroimaging literature must be addressed for any results to be interpretable.

We argue that the vast majority of ME/CFS neuroimaging has failed to use optimal techniques for studying brainstem, despite its probable centrality to any neuroinflammatory causes or autonomic effects. MRS is discussed as a less informative but more widely available, less invasive, and less expensive option for imaging neuroinflammation, and existing studies using MRS neuroimaging are reviewed. Studies seeking to find a peripheral circulating cytokine “profile” for ME/CFS are reviewed, with attention paid to the biological and methodological reasons for lack of replication among these studies.

We argue that both the biological mechanisms of cytokines and the innumerable sources of potential variance in their measurement make it unlikely that a consistent and replicable diagnostic cytokine profile will ever be discovered.

Source: Michael B. VanElzakker, Sydney A. Brumfield and Paula S. Lara Mejia. Neuroinflammation and Cytokines in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Critical Review of Research Methods. Front. Neurol., 10 January 2019 | https://doi.org/10.3389/fneur.2018.01033 https://www.frontiersin.org/articles/10.3389/fneur.2018.01033/full?fbclid=IwAR3KxhofUaLakZRPNiyBliNHSlJvUOdsVqVf5cED_i6o5gF9MCbWxpeS298#h7 (Full article)

Chronic fatigue syndrome from vagus nerve infection: a psychoneuroimmunological hypothesis

Abstract:

Chronic fatigue syndrome (CFS) is an often-debilitating condition of unknown origin. There is a general consensus among CFS researchers that the symptoms seem to reflect an ongoing immune response, perhaps due to viral infection. Thus, most CFS research has focused upon trying to uncover that putative immune system dysfunction or specific pathogenic agent. However, no single causative agent has been found.

In this speculative article, I describe a new hypothesis for the etiology of CFS: infection of the vagus nerve. When immune cells of otherwise healthy individuals detect any peripheral infection, they release proinflammatory cytokines. Chemoreceptors of the sensory vagus nerve detect these localized proinflammatory cytokines, and send a signal to the brain to initiate sickness behavior. Sickness behavior is an involuntary response that includes fatigue, fever, myalgia, depression, and other symptoms that overlap with CFS.

The vagus nerve infection hypothesis of CFS contends that CFS symptoms are a pathologically exaggerated version of normal sickness behavior that can occur when sensory vagal ganglia or paraganglia are themselves infected with any virus or bacteria. Drawing upon relevant findings from the neuropathic pain literature, I explain how pathogen-activated glial cells can bombard the sensory vagus nerve with proinflammatory cytokines and other neuroexcitatory substances, initiating an exaggerated and intractable sickness behavior signal. According to this hypothesis, any pathogenic infection of the vagus nerve can cause CFS, which resolves the ongoing controversy about finding a single pathogen. The vagus nerve infection hypothesis offers testable hypotheses for researchers, animal models, and specific treatment strategies.

Copyright © 2013 Elsevier Ltd. All rights reserved.

 

Source: VanElzakker MB. Chronic fatigue syndrome from vagus nerve infection: a psychoneuroimmunological hypothesis. Med Hypotheses. 2013 Sep;81(3):414-23. doi: 10.1016/j.mehy.2013.05.034. Epub 2013 Jun 19. https://www.ncbi.nlm.nih.gov/pubmed/23790471