Thrombo-inflammation in Long COVID – the elusive key to post-infection sequelae?

Abstract:

Long COVID is a public health emergency affecting millions of people worldwide, characterized by heterogenous symptoms across multiple organs systems. Here, we discuss the current evidence linking thrombo-inflammation to Post-acute sequelae of COVID-19 (PASC).

Studies have found persistence of vascular damage with increased circulating markers of endothelial dysfunction, coagulation abnormalities with increased thrombin generation capacity, and abnormalities in platelet counts in PASC. Neutrophil phenotype resembles acute COVID-19 with an increase in activation and NETosis. These insights are potentially linked by elevated platelet-neutrophil aggregate formation. This hypercoagulable state in turn can lead to microvascular thrombosis, evidenced by microclots and elevated D-Dimer in the circulation, as well as perfusion abnormalities in the lung and brain of Long COVID patients. Also, COVID-19 survivors suffer from an increased rate of arterial and venous thrombotic events.

We discuss three important, potentially intertwined hypotheses, that might contribute to thromboinflammation in Long COVID: Lasting structural changes, most prominently endothelial damage, caused during initial infection, a persistent viral reservoir, and immunopathology driven by a misguided immune system.

Lastly, we outline the necessity for large, well-characterized clinical cohorts and mechanistic studies to clarify the contribution of thromboinflammation to Long COVID.

Source: Nicolai L, Kaiser R, Stark K. Thrombo-inflammation in Long COVID – the elusive key to post-infection sequelae? J Thromb Haemost. 2023 May 11:S1538-7836(23)00400-2. doi: 10.1016/j.jtha.2023.04.039. Epub ahead of print. PMID: 37178769; PMCID: PMC10174338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174338/ (Full text)

Long COVID and the cardiovascular system-elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: a joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial and Pericardial Diseases

Abstract:

Long COVID has become a world-wide, non-communicable epidemic, caused by long-lasting multiorgan symptoms that endure for weeks or months after SARS-CoV-2 infection has already subsided. This scientific document aims to provide insight into the possible causes and therapeutic options available for the cardiovascular manifestations of long COVID.

In addition to chronic fatigue, which is a common symptom of long COVID, patients may present with chest pain, ECG abnormalities, postural orthostatic tachycardia, or newly developed supraventricular or ventricular arrhythmias. Imaging of the heart and vessels has provided evidence of chronic, post-infectious perimyocarditis with consequent left or right ventricular failure, arterial wall inflammation, or microthrombosis in certain patient populations.

Better understanding of the underlying cellular and molecular mechanisms of long COVID will aid in the development of effective treatment strategies for its cardiovascular manifestations. A number of mechanisms have been proposed, including those involving direct effects on the myocardium, microthrombotic damage to vessels or endothelium, or persistent inflammation.

Unfortunately, existing circulating biomarkers, coagulation, and inflammatory markers, are not highly predictive for either the presence or outcome of long COVID when measured 3 months after SARS-CoV-2 infection. Further studies are needed to understand underlying mechanisms, identify specific biomarkers, and guide future preventive strategies or treatments to address long COVID and its cardiovascular sequelae.

Source: Selvakumar J, Havdal LB, Drevvatne M, Brodwall EM, Lund Berven L, Stiansen-Sonerud T, Einvik G, Leegaard TM, Tjade T, Michelsen AE, Mollnes TE, Lund-Johansen F, Holmøy T, Zetterberg H, Blennow K, Sandler CX, Cvejic E, Lloyd AR, Wyller VBB. Prevalence and Characteristics Associated With Post-COVID-19 Condition Among Nonhospitalized Adolescents and Young Adults. JAMA Netw Open. 2023 Mar 1;6(3):e235763. doi: 10.1001/jamanetworkopen.2023.5763. PMID: 36995712; PMCID: PMC10064252. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10064252/ (Full text)

Transcriptional reprogramming from innate immune functions to a pro-thrombotic signature by monocytes in COVID-19

Abstract:

Although alterations in myeloid cells have been observed in COVID-19, the specific underlying mechanisms are not completely understood. Here, we examine the function of classical CD14+ monocytes in patients with mild and moderate COVID-19 during the acute phase of infection and in healthy individuals.

Monocytes from COVID-19 patients display altered expression of cell surface receptors and a dysfunctional metabolic profile that distinguish them from healthy monocytes. Secondary pathogen sensing ex vivo leads to defects in pro-inflammatory cytokine and type-I IFN production in moderate COVID-19 cases, together with defects in glycolysis.

COVID-19 monocytes switch their gene expression profile from canonical innate immune to pro-thrombotic signatures and are functionally pro-thrombotic, both at baseline and following ex vivo stimulation with SARS-CoV-2. Transcriptionally, COVID-19 monocytes are characterized by enrichment of pathways involved in hemostasis, immunothrombosis, platelet aggregation and other accessory pathways to platelet activation and clot formation. These results identify a potential mechanism by which monocyte dysfunction may contribute to COVID-19 pathology.

Source: Maher AK, Burnham KL, Jones EM, Tan MMH, Saputil RC, Baillon L, Selck C, Giang N, Argüello R, Pillay C, Thorley E, Short CE, Quinlan R, Barclay WS, Cooper N, Taylor GP, Davenport EE, Dominguez-Villar M. Transcriptional reprogramming from innate immune functions to a pro-thrombotic signature by monocytes in COVID-19. Nat Commun. 2022 Dec 26;13(1):7947. doi: 10.1038/s41467-022-35638-y. PMID: 36572683; PMCID: PMC9791976. https://www.nature.com/articles/s41467-022-35638-y (Full text)

Pathophysiological mechanisms of thrombosis in acute and long COVID-19

Abstract:

COVID-19 patients have a high incidence of thrombosis, and thromboembolic complications are associated with severe COVID-19 and high mortality. COVID-19 disease is associated with a hyper-inflammatory response (cytokine storm) mediated by the immune system. However, the role of the inflammatory response in thrombosis remains incompletely understood.

In this review, we investigate the crosstalk between inflammation and thrombosis in the context of COVID-19, focusing on the contributions of inflammation to the pathogenesis of thrombosis, and propose combined use of anti-inflammatory and anticoagulant therapeutics. Under inflammatory conditions, the interactions between neutrophils and platelets, platelet activation, monocyte tissue factor expression, microparticle release, and phosphatidylserine (PS) externalization as well as complement activation are collectively involved in immune-thrombosis. Inflammation results in the activation and apoptosis of blood cells, leading to microparticle release and PS externalization on blood cells and microparticles, which significantly enhances the catalytic efficiency of the tenase and prothrombinase complexes, and promotes thrombin-mediated fibrin generation and local blood clot formation.

Given the risk of thrombosis in the COVID-19, the importance of antithrombotic therapies has been generally recognized, but certain deficiencies and treatment gaps in remain. Antiplatelet drugs are not in combination with anticoagulant treatments, thus fail to dampen platelet procoagulant activity. Current treatments also do not propose an optimal time for anticoagulation. The efficacy of anticoagulant treatments depends on the time of therapy initiation. The best time for antithrombotic therapy is as early as possible after diagnosis, ideally in the early stage of the disease.

We also elaborate on the possible mechanisms of long COVID thromboembolic complications, including persistent inflammation, endothelial injury and dysfunction, and coagulation abnormalities. The above-mentioned contents provide therapeutic strategies for COVID-19 patients and further improve patient outcomes.

Source: Jing H, Wu X, Xiang M, Liu L, Novakovic VA, Shi J. Pathophysiological mechanisms of thrombosis in acute and long COVID-19. Front Immunol. 2022 Nov 16;13:992384. doi: 10.3389/fimmu.2022.992384. PMID: 36466841; PMCID: PMC9709252. https://www.frontiersin.org/articles/10.3389/fimmu.2022.992384/full (Full text)