Severity of neurological long-COVID symptoms correlates with increased level of autoantibodies targeting vasoregulatory and autonomic nervous system receptors

Abstract:

Background: The Long-COVID syndrome constitutes a plethora of persisting symptoms with neurological disorders being the most disabling ones. The pathogenesis of Long-COVID is currently under heavy scrutiny and existing data on the role of auto-immune reaction to G-protein coupled receptors (GPCR) are conflicting.

Methods: This monocentric, cross-sectional study included patients who suffered a mild to moderate SARS-CoV-2 infection up to 12 months prior to enrollment with (n = 72) or without (n = 58) Long-COVID diagnosis according to the German S1 guideline or with no known history of SARS-CoV-2 infection (n = 70). While autoantibodies towards the vasoregulation associated Adrenergic Receptor (ADR) B1 and B2 and the CNS and vasoregulation associated muscarinic acetylcholine receptor (CHR) M3 and M4 were measured by ELISA, neurological disorders were quantified by internationally standardized questionnaires.

Results: The prevalence and concentrations of evaluated autoantibodes were significantly higher in Long-COVID compared to the 2 other groups (p = 2.1*10−9) with a significantly higher number of patients with simultaneous detection of more than one autoantibody in Long-COVID group (p = 0.0419). Importantly, the overall inflammatory state was low in all 3 groups. ARB1 and ARB2 correlated negatively CERAD Trail Marking A and B (R ≤ −0.26, p ≤ 0.043), while CHRM3 correlated positively with Chadler Fatigue Scale (R = 0.37, p = 0.0087).

Conclusions: Concentrations of autoantibodies correlates to intensity of neurological disorders including psychomotor speed, visual search, attention, and fatigue.

Source: Felix S. Seibert, Ulrik Stervbo, Lea Wiemers, Sarah Skrzypczyk, Maximillian Hogeweg, Sebastian Bertram, Julia Kurek, Moritz Anft, Timm H. Westhoff, Nina Babel. Severity of neurological long-COVID symptoms correlates with increased level of autoantibodies targeting vasoregulatory and autonomic nervous system receptors. Autoimmunity Reviews,2023, 103445, ISSN 1568-9972. https://www.sciencedirect.com/science/article/abs/pii/S1568997223001799 (Full text)

The effects of COVID-19 on cognitive performance in a community-based cohort: a COVID symptom study biobank prospective cohort study

Abstract:

Background: Cognitive impairment has been reported after many types of infection, including SARS-CoV-2. Whether deficits following SARS-CoV-2 improve over time is unclear. Studies to date have focused on hospitalised individuals with up to a year follow-up. The presence, magnitude, persistence and correlations of effects in community-based cases remain relatively unexplored.

Methods: Cognitive performance (working memory, attention, reasoning, motor control) was assessed in a prospective cohort study of participants from the United Kingdom COVID Symptom Study Biobank between July 12, 2021 and August 27, 2021 (Round 1), and between April 28, 2022 and June 21, 2022 (Round 2). Participants, recruited from the COVID Symptom Study smartphone app, comprised individuals with and without SARS-CoV-2 infection and varying symptom duration. Effects of COVID-19 exposures on cognitive accuracy and reaction time scores were estimated using multivariable ordinary least squares linear regression models weighted for inverse probability of participation, adjusting for potential confounders and mediators. The role of ongoing symptoms after COVID-19 infection was examined stratifying for self-perceived recovery. Longitudinal analysis assessed change in cognitive performance between rounds.

Findings: 3335 individuals completed Round 1, of whom 1768 also completed Round 2. At Round 1, individuals with previous positive SARS-CoV-2 tests had lower cognitive accuracy (N = 1737, β = -0.14 standard deviations, SDs, 95% confidence intervals, CI: -0.21, -0.07) than negative controls. Deficits were largest for positive individuals with ≥12 weeks of symptoms (N = 495, β = -0.22 SDs, 95% CI: -0.35, -0.09). Effects were comparable to hospital presentation during illness (N = 281, β = -0.31 SDs, 95% CI: -0.44, -0.18), and 10 years age difference (60-70 years vs. 50-60 years, β = -0.21 SDs, 95% CI: -0.30, -0.13) in the whole study population. Stratification by self-reported recovery revealed that deficits were only detectable in SARS-CoV-2 positive individuals who did not feel recovered from COVID-19, whereas individuals who reported full recovery showed no deficits. Longitudinal analysis showed no evidence of cognitive change over time, suggesting that cognitive deficits for affected individuals persisted at almost 2 years since initial infection.

Interpretation: Cognitive deficits following SARS-CoV-2 infection were detectable nearly two years post infection, and largest for individuals with longer symptom durations, ongoing symptoms, and/or more severe infection. However, no such deficits were detected in individuals who reported full recovery from COVID-19. Further work is needed to monitor and develop understanding of recovery mechanisms for those with ongoing symptoms.

Source: Cheetham NJ, Penfold R, Giunchiglia V, Bowyer V, Sudre CH, Canas LS, Deng J, Murray B, Kerfoot E, Antonelli M, Rjoob K, Molteni E, Österdahl MF, Harvey NR, Trender WR, Malim MH, Doores KJ, Hellyer PJ, Modat M, Hammers A, Ourselin S, Duncan EL, Hampshire A, Steves CJ. The effects of COVID-19 on cognitive performance in a community-based cohort: a COVID symptom study biobank prospective cohort study. EClinicalMedicine. 2023 Jul 21;62:102086. doi: 10.1016/j.eclinm.2023.102086. PMID: 37654669; PMCID: PMC10466229. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10466229/ (Full text)

Dysregulation of extracellular vesicle protein cargo in female ME/CFS cases and sedentary controls in response to maximal exercise

Abstract:

In healthy individuals, physical exercise improves cardiovascular health and muscle stre ngth, alleviates fatigue, and reduces risk of chronic diseases. Although exercise is suggested as a lifestyle intervention to manage various chronic illnesses, it negatively affects people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), who suffer from exercise intolerance. We hypothesized that altered extracellular vesicle (EV) signaling in ME/CFS patients after an exercise challenge may contribute to their prolonged and exacerbated negative response to exertion (post-exertional malaise).

EVs were isolated by size exclusion chromatography from the plasma of 18 female ME/CFS patients and 17 age- and BMI-matched female sedentary controls at three time points: before, 15 minutes, and 24 hours after a maximal cardiopulmonary exercise test. EVs were characterized using nanoparticle tracking analysis and their protein cargo was quantified using Tandem Mass Tag-based (TMT) proteomics.

The results show that exercise affects the EV proteome in ME/CFS patients differently than in healthy individuals and that changes in EV proteins after exercise are strongly correlated with symptom severity in ME/CFS. Differentially abundant proteins in ME/CFS patients vs. controls were involved in many pathways and systems, including coagulation processes, muscle contraction (both smooth and skeletal muscle), cytoskeletal proteins, the immune system, and brain signaling.

Source: Ludovic GiloteauxKatherine A. GlassArnaud GermainSheng ZhangMaureen R. Hanson. Dysregulation of extracellular vesicle protein cargo in female ME/CFS cases and sedentary controls in response to maximal exercise. https://www.biorxiv.org/content/10.1101/2023.08.28.555033v1.full (Full text)

Long-term symptom severity and clinical biomarkers in post-COVID-19/chronic fatigue syndrome: results from a prospective observational cohort

Summary:

Background: Post-COVID-19 syndrome (PCS) is characterised by a wide range of symptoms, primarily fatigue and exertion intolerance. While disease courses in the early months post-infection have been well-described, the long-term health consequences for patients with PCS with disabling fatigue remain unclear.

Methods: In this prospective observational cohort study, we evaluated symptom severity and various biomarkers, including hand grip strength (HGS), cardiovascular function, and laboratory parameters, in 106 patients with PCS with moderate to severe fatigue and exertion intolerance at three time points after infection (3–8, 9–16, and 17–20 months). The study was conducted at the Charité’s Fatigue Centre and the Charité’s outpatient clinic for neuroimmunology at Berlin, Germany from July 16, 2020, to February 18, 2022. A subset of patients (PCS-ME/CFS) met the diagnostic criteria for myalgic encephalomyelitis/chronic fatigue syndrome according to the Canadian Consensus Criteria (CCC). The aim was to determine differences in the disease course between the two patient groups (i.e., PCS vs PCS-ME/CFS) and identify correlating biomarkers.

Findings: Patients with PCS-ME/CFS reported persistently high severity of most symptoms up to 20 months after infection, while patients with PCS showed overall health improvement. Although fatigue and post-exertional malaise (PEM), hallmarks of post-infectious fatigue syndromes, were still evident in both groups, they remained more pronounced in PCS-ME/CFS. Inflammatory biomarkers decreased in both groups, but not antinuclear antibodies. Lower HGS at onset correlated with symptom persistence, particularly in patients with PCS-ME/CFS.

Interpretation: Our findings suggest that PCS can persist beyond 20 months post-infection and encompass the full scope of post-infectious ME/CFS as defined by the CCC. Sub-classifying patients with PCS based on the CCC can assist in the management and monitoring of patients with PCS-ME/CFS due to their persistently higher symptom severity.

Source: Franziska Legler, Lil Meyer-Arndt, Lukas Mödl, Claudia Kedor, Helma Freitag, Elisa Stein, Uta Hoppmann, Rebekka Rust, Kirsten Wittke, Nadja Siebert, Janina Behrens, Andreas Thiel, Frank Konietschke, Friedemann Paul, Carmen Scheibenbogen, Judith Bellmann-Strobl,
Long-term symptom severity and clinical biomarkers in post-COVID-19/chronic fatigue syndrome: results from a prospective observational cohort, eClinicalMedicine, Volume 63, 2023, 102146, ISSN 2589-5370, https://doi.org/10.1016/j.eclinm.2023.102146. https://www.sciencedirect.com/science/article/pii/S2589537023003231 (Full text)

Home-based testing protocol to measure physiological responses to everyday activities in ME: a feasibility study

Abstract:

Background and objectives: Individuals with Myalgic Encephalomyelitis (ME) have shown altered physiological responses during maximum cardiopulmonary exercise testing. However, maximal testing is not representative of the everyday activities reported to cause or increase symptoms in ME, and is not accessible for those with severe or very severe illness. The aim of this study was to assess the feasibility and acceptability of a home-based testing protocol to measure physiological responses in ME to everyday activity.

Methods: Researchers attended participants’ homes to collect data and provide equipment for independent testing. Adults with ME who met the International Consensus Criteria wore a portable metabolic assessment system and a physiological stress monitor. Blood pressure, heart rate, oxygen saturation and lactic acid were assessed during a range of everyday positions and activities in their own homes.

Results: Online recruitment yielded 70 volunteers in 24 h. 17 eligible individuals reflecting a range of illness severities were enrolled. All participants found the procedures acceptable with 12 (70%) subjects completing every listed activity. Apparent physiological abnormalities were identified in all participants.

Conclusion: Physiological measurement during everyday activities was feasible for our participants who represented a range of ME severities. Activities must be adapted for different levels of severity to avoid significant symptom exacerbation. Further research is needed to develop home-based assessment protocols to advance the biobehavioral understanding of ME.

Trial registration number: ISRCTN78379409

Source: Nicola Clague-Baker, Sarah Tyson, Karen Leslie, Helen Dawes, Michelle Bull & Natalie Hilliard (2023) Home-based testing protocol to measure physiological responses to everyday activities in ME: a feasibility study, Fatigue: Biomedicine, Health & Behavior, DOI: 10.1080/21641846.2023.2245584 https://www.tandfonline.com/doi/full/10.1080/21641846.2023.2245584 (Full text)

A retrospective cohort analysis leveraging augmented intelligence to characterize long COVID in the electronic health record: A precision medicine framework

Abstract:

Physical and psychological symptoms lasting months following an acute COVID-19 infection are now recognized as post-acute sequelae of COVID-19 (PASC). Accurate tools for identifying such patients could enhance screening capabilities for the recruitment for clinical trials, improve the reliability of disease estimates, and allow for more accurate downstream cohort analysis.

In this retrospective cohort study, we analyzed the EHR of hospitalized COVID-19 patients across three healthcare systems to develop a pipeline for better identifying patients with persistent PASC symptoms (dyspnea, fatigue, or joint pain) after their SARS-CoV-2 infection. We implemented distributed representation learning powered by the Machine Learning for modeling Health Outcomes (MLHO) to identify novel EHR features that could suggest PASC symptoms outside of typical diagnosis codes. MLHO applies an entropy-based feature selection and boosting algorithms for representation mining. These improved definitions were then used for estimating PASC among hospitalized patients.

30,422 hospitalized patients were diagnosed with COVID-19 across three healthcare systems between March 13, 2020 and February 28, 2021. The mean age of the population was 62.3 years (SD, 21.0 years) and 15,124 (49.7%) were female.

We implemented the distributed representation learning technique to augment PASC definitions. These definitions were found to have positive predictive values of 0.73, 0.74, and 0.91 for dyspnea, fatigue, and joint pain, respectively.

We estimated that 25 percent (CI 95%: 6-48), 11 percent (CI 95%: 6-15), and 13 percent (CI 95%: 8-17) of hospitalized COVID-19 patients will have dyspnea, fatigue, and joint pain, respectively, 3 months or longer after a COVID-19 diagnosis. We present a validated framework for screening and identifying patients with PASC in the EHR and then use the tool to estimate its prevalence among hospitalized COVID-19 patients.

Source: Strasser ZH, Dagliati A, Shakeri Hossein Abad Z, Klann JG, Wagholikar KB, Mesa R, Visweswaran S, Morris M, Luo Y, Henderson DW, Samayamuthu MJ; Consortium for Clinical Characterization of COVID-19 by EHR (4CE); Omenn GS, Xia Z, Holmes JH, Estiri H, Murphy SN. A retrospective cohort analysis leveraging augmented intelligence to characterize long COVID in the electronic health record: A precision medicine framework. PLOS Digit Health. 2023 Jul 25;2(7):e0000301. doi: 10.1371/journal.pdig.0000301. PMID: 37490472; PMCID: PMC10368277. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368277/ (Full text)

Initial COVID-19 Severity and Long-COVID Manifestations: An Observational Analysis

Abstract:

Objective: New-onset or persistent symptoms beyond after 4 weeks from COVID-19 are termed “long-COVID.” Whether the initial severity of COVID-19 has a bearing on the clinicoradiological manifestations of long COVID is an area of interest.

Material and methods: We did an observational analysis of the long-COVID patients after categorizing them based on their course of COVID-19 illness into mild, moderate, and severe groups. The clinical and radiological profile was compared across these groups.

Results: Out of 150 long-COVID patients recruited in the study, about 79% (118), 14% (22), and 7% (10) had a history of mild, moderate, and severe COVID-19, respectively. Fatigue (P = .001), breathlessness (P = .001), tachycardia (P = .002), tachypnea (P < .001), raised blood pressure (P < .001), crepitations (P = .04), hypoxia at rest (P < .001), significant desaturation in 6-minute walk test (P = .27), type 1 respiratory failure (P = .001), and type 2 respiratory failure (P = .001) were found to be significantly higher in the long-COVID patients with a history of severe COVID-19. These patients also had the highest prevalence of abnormal chest X-ray (60%) and honeycombing in computed tomography scan thorax (25%, P = .027).

Conclusion: The course of long COVID bears a relationship with initial COVID-19 severity. Patients with severe COVID-19 are prone to develop more serious long-COVID manifestations.

Source: Goel N, Goyal N, Spalgais S, Mrigpuri P, Varma-Basil M, Khanna M, Nagaraja R, Menon B, Kumar R. Initial COVID-19 Severity and Long-COVID Manifestations: An Observational Analysis. Thorac Res Pract. 2023 Jan;24(1):22-28. doi: 10.5152/ThoracResPract.2023.21307. PMID: 37503595. https://thoracrespract.org/en/initial-covid-19-severity-and-long-covid-manifestations-an-observational-analysis-165530 (Full text as PDF file)

Evidence of a Novel Mitochondrial Signature in Systemic Sclerosis Patients with Chronic Fatigue Syndrome

Abstract:

Symptoms of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are common in rheumatic diseases, but no studies report the frequency of these in early systemic sclerosis. There are no known biomarkers that can distinguish between patients with ME/CFS, although mitochondrial abnormalities are often demonstrated.

We sought to assess the prevalence of ME/CFS in limited cutaneous SSc (lcSSc) patients early in their disease (<5 years from the onset of non-Raynaud’s symptoms) and to determine if alterations in mitochondrial electron transport chain (ETC) transcripts and mitochondrial DNA (mtDNA) integrity could be used to distinguish between fatigued and non-fatigued patients.

All SSc patients met ACR/EULAR classification criteria. ME/CFS-related symptoms were assessed through validated questionnaires, and the expression of ETC transcripts and mtDNA integrity were quantified via qPCR.

SSc patients with ME/CFS could be distinguished from non-fatigued patients through ETC gene analysis; specifically, reduced expression of ND4 and CyB and increased expression of Cox7C. ND4 and CyB expression correlated with indicators of disease severity.

Further prospective and functional studies are needed to determine if this altered signature can be further utilized to better identify ME/CFS in SSc patients, and whether ME/CFS in early SSc disease could predict more severe disease outcomes.

Source: van Eeden C, Redmond D, Mohazab N, Larché MJ, Mason AL, Cohen Tervaert JW, Osman MS. Evidence of a Novel Mitochondrial Signature in Systemic Sclerosis Patients with Chronic Fatigue Syndrome. International Journal of Molecular Sciences. 2023; 24(15):12057. https://doi.org/10.3390/ijms241512057 https://www.mdpi.com/1422-0067/24/15/12057 (Full text)

Prolonged T-cell activation and long COVID symptoms independently associate with severe COVID-19 at 3 months

Abstract:

COVID-19 causes immune perturbations which may persist long-term, and patients frequently report ongoing symptoms for months after recovery. We assessed immune activation at 3-12 months post hospital admission in 187 samples from 63 patients with mild, moderate or severe disease and investigated whether it associates with long COVID.

At 3 months, patients with severe disease displayed persistent activation of CD4+ and CD8+ T-cells, based on expression of HLA-DR, CD38, Ki67 and granzyme B, and elevated plasma levels of IL-4, IL-7, IL-17 and TNF-α compared to mild and/or moderate patients. Plasma from severe patients at 3 months caused T-cells from healthy donors to upregulate IL-15Rα, suggesting that plasma factors in severe patients may increase T-cell responsiveness to IL-15-driven bystander activation.

Patients with severe disease reported a higher number of long COVID symptoms which did not however, correlate with cellular immune activation/pro-inflammatory cytokines after adjusting for age, sex and disease severity. Our data suggests that long COVID and persistent immune activation may correlate independently with severe disease.

Source: Marianna Santopaolo, Michaela Gregorova, Fergus Hamilton, David Arnold, Anna Long, Aurora Lacey, Alice Halliday, Holly Baum, Kristy Hamilton, Rachel Milligan, Elizabeth Oliver, Olivia Pearce, Lea Knezevic, Begonia Morales Aza, Alice Milne, Emily Milodowski, Eben Jones, Rajeka Lazarus, Anu Goenka, Adam Finn, Nicholas Maskell, Andrew D Davidson, Kathleen Gillespie, Linda Wooldridge, Laura Rivino (2023) Prolonged T-cell activation and long COVID symptoms independently associate with severe COVID-19 at 3 months eLife 12:e85009 https://doi.org/10.7554/eLife.85009 https://elifesciences.org/articles/85009

Comprehensive profiling of the human intestinal DNA virome and prediction of disease-associated bacterial hosts in severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling disorder of unknown etiology with severely affected patients being house- and/or bedbound. A historical association with chronic virus infection and subsequent recent reports correlating intestinal microbial dysbiosis with disease pathology prompted us to analyze the intestinal virome in a small cohort of severely-affected ME/CFS patients and same household healthy controls (SHHC).

Datasets from whole metagenomic sequencing (WMS) and sequencing of virus-like particles (VLP)-enriched metagenomes from the same fecal sample yielded diverse, high-quality vOTUs with high read coverage and high genome completeness. The core intestinal virome was largely composed of tailed phages in the class Caudoviricetes with no significant differences in alpha diversity between ME/CFS and SHHC groups. However, the WMS dataset had a higher Shannon measure than the VLP dataset (p < 0.0001), with VLP- and WMS-derived sequences indicating differential abundances within several viral families and different viral compositions in beta diversity.

This confirms that combining different isolation methodologies identifies a greater diversity of viruses including extracellular phages and integrated prophages. DNA viromes and bacteriomes from ME/CFS and SHHC groups were comparable with no differences in any alpha or beta diversity measures. One vOTU derived from the VLP-derived dataset was assigned to ssDNA human virus smacovirus 1. Using an in-silico approach to predict cohort-based bacterial hosts, we identified members of the Anaerotruncus genus interacting with unique viruses present in ME/CFS microbiomes; this may contribute to the GI microbial dysbiosis described in ME/CFS patients.

Source: Shen-Yuan HsiehGeorge M SavvaAndrea TelatinSumeet K TiwariMohammad A TariqFiona NewberryKatharine A SetonCatherine BoothAmolak S BansalTom WilemanEvelien AndriaenssensSimon R Carding. Comprehensive profiling of the human intestinal DNA virome and prediction of disease-associated bacterial hosts in severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS).