Brain FADE syndrome: the final common pathway of chronic inflammation in neurological disease

Abstract:

Importance: While the understanding of inflammation in the pathogenesis of many neurological diseases is now accepted, this special commentary addresses the need to study chronic inflammation in the propagation of cognitive Fog, Asthenia, and Depression Related to Inflammation which we name Brain FADE syndrome. Patients with Brain FADE syndrome fall in the void between neurology and psychiatry because the depression, fatigue, and fog seen in these patients are not idiopathic, but instead due to organic, inflammation involved in neurological disease initiation.

Observations: A review of randomized clinical trials in stroke, multiple sclerosis, Parkinson’s disease, COVID, traumatic brain injury, and Alzheimer’s disease reveal a paucity of studies with any component of Brain FADE syndrome as a primary endpoint. Furthermore, despite the relatively well-accepted notion that inflammation is a critical driving factor in these disease pathologies, none have connected chronic inflammation to depression, fatigue, or fog despite over half of the patients suffering from them.

Conclusions and relevance: Brain FADE Syndrome is important and prevalent in the neurological diseases we examined. Classical “psychiatric medications” are insufficient to address Brain FADE Syndrome and a novel approach that utilizes sequential targeting of innate and adaptive immune responses should be studied.

Source: Khalid A. Hanafy, Tudor G. Jovin. Brain FADE syndrome: the final common pathway of chronic inflammation in neurological disease. Front. Immunol., 17 January 2024, Sec. Inflammation, Volume 15 – 2024 | https://doi.org/10.3389/fimmu.2024.1332776 https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1332776/full (Full text)

The role of clinical neurophysiology in the definition and assessment of fatigue and fatigability

Highlights:

  • Though a common symptom, fatigue is difficult to define and investigate, and occurs in a wide variety of disorders, with differing pathological causes.
  • This review aims to guide clinicians in how to approach fatigue and to suggest that neurophysiological tests may allow an understanding of its origin and severity.
  • The effectiveness of neurophysiological tests as cost-effective objective biomarkers for the assessment of fatigue has been summarised.

Abstract

Though a common symptom, fatigue is difficult to define and investigate, occurs in a wide variety of neurological and systemic disorders, with differing pathological causes. It is also often accompanied by a psychological component. As a symptom of long-term COVID-19 it has gained more attention.

In this review, we begin by differentiating fatigue, a perception, from fatigability, quantifiable through biomarkers. Central and peripheral nervous system and muscle disorders associated with these are summarised. We provide a comprehensive and objective framework to help identify potential causes of fatigue and fatigability in a given disease condition. It also considers the effectiveness of neurophysiological tests as objective biomarkers for its assessment. Among these, twitch interpolation, motor cortex stimulation, electroencephalography and magnetencephalography, and readiness potentials will be described for the assessment of central fatigability, and surface and needle electromyography (EMG), single fibre EMG and nerve conduction studies for the assessment of peripheral fatigability.

The purpose of this review is to guide clinicians in how to approach fatigue, and fatigability, and to suggest that neurophysiological tests may allow an understanding of their origin and interactions. In this way, their differing types and origins, and hence their possible differing treatments, may also be defined more clearly.

Source: Tankisi H, Versace V, Kuppuswamy A, Cole J. The role of clinical neurophysiology in the definition and assessment of fatigue and fatigability. Clin Neurophysiol Pract. 2023 Dec 18;9:39-50. doi: 10.1016/j.cnp.2023.12.004. PMID: 38274859; PMCID: PMC10808861. https://www.sciencedirect.com/science/article/pii/S2467981X23000367 (Full text)

Herpesvirus Infection as a Systemic Pathological Axis in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Understanding the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is critical for advancing treatment options. This review explores the novel hypothesis that herpesviruses’ infection of endothelial cells (ECs) may underlie ME/CFS symptomatology.
We review evidence linking herpesviruses to persistent EC infection and the implications for endothelial dysfunction, encompassing blood flow regulation, coagulation, and cognitive impairment – symptoms consistent with ME/CFS and Long COVID. The paper provides a synthesis of current research on herpesvirus latency and reactivation, detailing the impact on ECs and subsequent systemic complications, including latent modulation and long-term maladaptation.
We suggest that the chronicity of ME/CFS symptoms and the multisystemic nature of the disease may be partly attributable to herpesvirus-induced endothelial maladaptation. Our conclusions underscore the necessity for further investigation into the prevalence and load of herpesvirus infection within ECs of ME/CFS patients.
This review offers a conceptual advance by proposing an endothelial infection model as a systemic mechanism contributing to ME/CFS, steering future research towards potentially unexplored avenues in understanding and treating this complex syndrome.
Source: Nunes, J.M.; Kell, D.B.; Pretorius, E. Herpesvirus Infection as a Systemic Pathological Axis in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Preprints 2024, 2024011486. https://doi.org/10.20944/preprints202401.1486.v1 https://www.preprints.org/manuscript/202401.1486/v1 (Full text available as PDF file)

Advancing Research and Treatment: An Overview of Clinical Trials in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Future Perspectives

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic, debilitating, and multi-faceted illness. Heterogenous onset and clinical presentation with additional comorbidities make it difficult to diagnose, characterize, and successfully treat. Current treatment guidelines focus on symptom management, but with no clear target or causative mechanism, remission rates are low, and fewer than 5% of patients return to their pre-morbid activity levels. Therefore, there is an urgent need to undertake robust clinical trials to identify effective treatments.
This review synthesizes insights from clinical trials exploring pharmacological interventions and dietary supplements targeting immunological, metabolic, gastrointestinal, neurological, and neuroendocrine dysfunction in ME/CFS patients which require further exploration. Additionally, the trialling of alternative interventions in ME/CFS based on reported efficacy in the treatment of illnesses with overlapping symptomology is also discussed. Finally, we provide important considerations and make recommendations, focusing on outcome measures, to ensure the execution of future high-quality clinical trials to establish clinical efficacy of evidence-based interventions that are needed for adoption in clinical practice.
Source: Seton KA, Espejo-Oltra JA, Giménez-Orenga K, Haagmans R, Ramadan DJ, Mehlsen J on behalf of the European ME Research Group for Early Career Researchers (Young EMERG). Advancing Research and Treatment: An Overview of Clinical Trials in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Future Perspectives. Journal of Clinical Medicine. 2024; 13(2):325. https://doi.org/10.3390/jcm13020325 https://www.mdpi.com/2077-0383/13/2/325 (Full text)

Mitochondrial Dysfunction and Coenzyme Q10 Supplementation in Post-Viral Fatigue Syndrome: An Overview

Abstract:

Post-viral fatigue syndrome (PVFS) encompasses a wide range of complex neuroimmune disorders of unknown causes characterised by disabling post-exertional fatigue, myalgia and joint pain, cognitive impairments, unrefreshing sleep, autonomic dysfunction, and neuropsychiatric symptoms. It includes myalgic encephalomyelitis, also known as chronic fatigue syndrome (ME/CFS); fibromyalgia (FM); and more recently post-COVID-19 condition (long COVID). To date, there are no definitive clinical case criteria and no FDA-approved pharmacological therapies for PVFS. Given the current lack of effective treatments, there is a need to develop novel therapeutic strategies for these disorders.
Mitochondria, the cellular organelles responsible for tissue energy production, have recently garnered attention in research into PVFS due to their crucial role in cellular bioenergetic metabolism in these conditions. The accumulating literature has identified a link between mitochondrial dysfunction and low-grade systemic inflammation in ME/CFS, FM, and long COVID. To address this issue, this article aims to critically review the evidence relating to mitochondrial dysfunction in the pathogenesis of these disorders; in particular, it aims to evaluate the effectiveness of coenzyme Q10 supplementation on chronic fatigue and pain symptoms as a novel therapeutic strategy for the treatment of PVFS.
Source: Mantle D, Hargreaves IP, Domingo JC, Castro-Marrero J. Mitochondrial Dysfunction and Coenzyme Q10 Supplementation in Post-Viral Fatigue Syndrome: An Overview. International Journal of Molecular Sciences. 2024; 25(1):574. https://doi.org/10.3390/ijms25010574 https://www.mdpi.com/1422-0067/25/1/574 (Full text)

Sex differences in vascular endothelial function related to acute and long COVID-19

Abstract:

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has been at the forefront of health sciences research since its emergence in China in 2019 that quickly led to a global pandemic. As a result of this research, and the large numbers of infected patients globally, there were rapid enhancements made in our understanding of Coronavirus disease 2019 (COVID-19) pathology, including its role in the development of uncontrolled immune responses and its link to the development of endotheliitis and endothelial dysfunction.

There were also some noted differences in the rate and severity of infection between males and females with acute COVID. Some individuals infected with SARS-CoV-2 also experience long-COVID, an important hallmark symptom of this being Myalgic Encephalomyelitis-Chronic Fatigue Syndrome (ME-CFS), also experienced differently between males and females.

The purpose of this review is to discuss the impact of sex on the vasculature during acute and long COVID-19, present any link between ME-CFS and endothelial dysfunction, and provide evidence for the relationship between ME-CFS and the immune system. We also will delineate biological sex differences observed in other post viral infections and, assess if sex differences exist in how the immune system responds to viral infection causing ME-CFS.

Source: Kayla KA, Bédard-Matteau J, Rousseau S, Tabrizchi R, Noriko D. Sex differences in vascular endothelial function related to acute and long COVID-19. Vascul Pharmacol. 2023 Dec 1:107250. doi: 10.1016/j.vph.2023.107250. Epub ahead of print. PMID: 38043758. https://www.sciencedirect.com/science/article/abs/pii/S1537189123001106 (Full text)

Mitochondrial Dysfunction and Coenzyme Q10 Supplementation in Post-Viral Fatigue Syndrome: An Overview

Abstract:

Post-viral fatigue syndrome (PVFS) encompasses a wide range of complex neuroimmune disorders of unknown cause characterized by disabling post-exertional fatigue, myalgia and joint pain, cognitive impairments, unrefreshing sleep, autonomic dysfunction, and neuropsychiatric symptoms. It includes myalgic encephalomyelitis, also known as chronic fatigue syndrome (ME/CFS), fibromyalgia (FM), and more recently post-COVID-19 condition (Long COVID).

To date, there are no definitive clinical case criteria and no FDA-approved pharmacological therapies for PVFS. Given the current lack of effective treatments, there is a need to develop novel therapeutic strategies for these disorders.

Mitochondria, the cellular organelles responsible for tissue energy production, have recently garnered attention in research into PVFS due to their crucial role in cellular bioenergetic metabolism in these conditions. Accumulating literature has identified a link between mitochondrial dysfunction and low-grade systemic inflammation in ME/CFS, FM, and Long COVID.

To address this issue, this article aimed to critically review the evidence relating to mitochondrial dysfunction in the pathogenesis of these disorders; in particular, to evaluate the effectiveness of coenzyme Q10 supplementation on chronic fatigue and pain symptoms as a novel therapeutic strategy for the treatment of PVFS.

Source: Mantle, D.; Hargreaves, I.P.; Domingo, J.C.; Castro-Marrero, J. Mitochondrial Dysfunction and Coenzyme Q10 Supplementation in Post-Viral Fatigue Syndrome: An Overview. Preprints 2023, 2023111554. https://doi.org/10.20944/preprints202311.1554.v1 https://www.preprints.org/manuscript/202311.1554/v1 (Full text available as PDF file)

Effects of traditional Chinese mind-body exercises for patients with chronic fatigue syndrome: A systematic review and meta-analysis

Abstract:

Background: Chronic fatigue syndrome (CFS) is a global public health concern. We performed this systematic review of randomised controlled trials (RCTs) to evaluate the effects and safety of traditional Chinese mind-body exercises (TCME) for patients with CFS.

Methods: We comprehensively searched MEDLINE, Embase, Web of Science, PsycINFO, Cochrane Library, CNKI, VIP databases, and Wanfang Data from inception to October 2022 for eligible RCTs of TCME for CFS management. We used Cochran’s Q statistic and I2 to assess heterogeneity and conducted subgroup analyses based on different types of TCME, background therapy, and types of fatigue. We also assessed the quality of evidence using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach.

Results: We included 13 studies (n = 1187) with a maximal follow-up of 12 weeks. TCME included Qigong and Tai Chi. At the end of the treatment, compared with passive control, TCME probably reduces the severity of fatigue (standardised mean differences (SMD) = 0.85; 95% confidence interval (CI) = 0.64, 1.07, moderate certainty), depression (SMD = 0.53; 95% CI = 0.34, 0.72, moderate certainty), anxiety (SMD = 0.29; 95% CI = 0.11, 0.48, moderate certainty), sleep quality (SMD = 0.34; 95% CI = 0.10, 0.57, low certainty) and mental functioning (SMD = 0.90; 95% CI = 0.50, 1.29, low certainty).

Compared with other active control therapies, TCME results in little to no difference in the severity of fatigue (SMD = 0.08; 95% CI = -0.18, 0.34, low certainty). For long-term outcomes, TCME may improve anxiety (SMD = 1.74; 95% CI = 0.44, 3.03, low certainty) compared to passive control. We did not identify TCME-related serious adverse events.

Conclusions: In patients with CFS, TCME probably reduces post-intervention fatigue, depression, and anxiety and may improve sleep quality and mental function compared with passive control, but has limited long-term effects. These findings will help health professionals and patients with better clinical decision-making.

Source: Kong L, Ren J, Fang S, Li Y, Wu Z, Zhou X, Hao Q, Fang M, Zhang YQ. Effects of traditional Chinese mind-body exercises for patients with chronic fatigue syndrome: A systematic review and meta-analysis. J Glob Health. 2023 Nov 24;13:04157. doi: 10.7189/jogh.13.04157. PMID: 37994837; PMCID: PMC10666566. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666566/ (Full text)

DNA Methylation Changes in Blood Cells of Fibromyalgia and Chronic Fatigue Syndrome Patients

Abstract:

Purpose: Fibromyalgia (FM) and Chronic Fatigue Syndrome (CFS) affect 0.4% and 1% of society, respectively, and the prevalence of these pain syndromes is increasing. To date, no strong association between these syndromes and the genetic background of affected individuals has been shown. Therefore, it is plausible that epigenetic changes might play a role in the development of these syndromes.

Patients and Methods: Three previous studies have attempted to elaborate the involvement of genome-wide methylation changes in blood cells in the development of fibromyalgia and chronic fatigue syndrome. These studies included 22 patients with fibromyalgia and 127 patients with CFS, and the results of the studies were largely discrepant. Contradicting results of those studies may be attributed to differences in the omics data analysis approaches used in each study. We reanalyzed the data collected in these studies using an updated and coherent data-analysis framework.

Results: Overall, the methylation changes that we observed overlapped with previous results only to some extent. However, the gene set enrichment analyses based on genes annotated to methylation changes identified in each of the analyzed datasets were surprisingly coherent and uniformly associated with the physiological processes that, when affected, may result in symptoms characteristic of fibromyalgia and chronic fatigue syndrome

Conclusion: Methylomes of the blood cells of patients with FM and CFS in three independent studies have shown methylation changes that appear to be implicated in the pathogenesis of these syndromes.

Source: Przybylowicz PK, Sokolowska KE, Rola H, Wojdacz TK. DNA Methylation Changes in Blood Cells of Fibromyalgia and Chronic Fatigue Syndrome Patients. J Pain Res. 2023;16:4025-4036 https://doi.org/10.2147/JPR.S439412 https://www.dovepress.com/dna-methylation-changes-in-blood-cells-of-fibromyalgia-and-chronic-fat-peer-reviewed-fulltext-article-JPR (Full text)

Brain-regional characteristics and neuroinflammation in ME/CFS patients from neuroimaging: A systematic review and meta-analysis

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition characterized by an elusive etiology and pathophysiology. This study aims to evaluate the pathological role of neuroinflammation in ME/CFS by conducting an exhaustive analysis of 65 observational studies.

Four neuroimaging techniques, including magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), electroencephalography (EEG), and positron emission tomography (PET), were employed to comparatively assess brain regional structure, metabolite profiles, electrical activity, and glial activity in 1529 ME/CFS patients (277 males, 1252 females) and 1715 controls (469 males, 1246 females). Clinical characteristics, including sex, age, and fatigue severity, were consistent with established epidemiological patterns.

Regional alterations were most frequently identified in the cerebral cortex, with a notable focus on the frontal cortex. However, our meta-analysis data revealed a significant hypoactivity in the insular and thalamic regions, contrary to observed frequencies. These abnormalities, occurring in pivotal network hubs bridging reason and emotion, disrupt connections with the limbic system, contributing to the hallmark symptoms of ME/CFS.

Furthermore, we discuss the regions where neuroinflammatory features are frequently observed and address critical neuroimaging limitations, including issues related to inter-rater reliability. This systematic review serves as a valuable guide for defining regions of interest (ROI) in future neuroimaging investigations of ME/CFS

Source: Lee JS, Sato W, Son CG. Brain-regional characteristics and neuroinflammation in ME/CFS patients from neuroimaging: A systematic review and meta-analysis. Autoimmun Rev. 2023 Nov 26:103484. doi: 10.1016/j.autrev.2023.103484. Epub ahead of print. PMID: 38016575. https://www.sciencedirect.com/science/article/pii/S1568997223002185 (Full text)