Post-COVID cognitive deficits at one year are global and associated with elevated brain injury markers and grey matter volume reduction: national prospective study

Abstract:

The spectrum, pathophysiology, and recovery trajectory of persistent post-COVID-19 cognitive deficits are unknown, limiting our ability to develop prevention and treatment strategies. We report the one-year cognitive, serum biomarker, and neuroimaging findings from a prospective, national longitudinal study of cognition in 351 COVID-19 patients who had required hospitalisation, compared to 2,927 normative matched controls.

Cognitive deficits were global and associated with elevated brain injury markers and reduced anterior cingulate cortex volume one year after admission. The severity of the initial infective insult, post-acute psychiatric symptoms, and a history of encephalopathy were associated with greatest deficits. There was strong concordance between subjective and objective cognitive deficits. Treatment with corticosteroids during the acute phase appeared protective against cognitive deficits. Together, these findings support the hypothesis that brain injury in moderate to severe COVID-19 is immune-mediated, and should guide the development of therapeutic strategies.

Source: Benedict Michael, Greta Wood, Brendan Sargent et al. Post-COVID cognitive deficits at one year are global and associated with elevated brain injury markers and grey matter volume reduction: national prospective study, 05 January 2024, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-3818580/v1] https://www.researchsquare.com/article/rs-3818580/v1 (Full text)

Brain disorders: Impact of mild SARS-CoV-2 may shrink several parts of the brain

Abstract:

Coronavirus (COVID-19) is a highly infectious respiratory infection discovered in Wuhan, China, in December 2019. As a result of the pandemic, several individuals have experienced life-threatening diseases, the loss of loved ones, lockdowns, isolation, an increase in unemployment, and household conflict. Moreover, COVID-19 may cause direct brain injury via encephalopathy. The long-term impacts of this virus on mental health and brain function need to be analysed by researchers in the coming years.

This article aims to describe the prolonged neurological clinical consequences related to brain changes in people with mild COVID-19 infection. When compared to a control group, people those who tested positive for COVID-19 had more brain shrinkage, grey matter shrinkage, and tissue damage. The damage occurs predominantly in areas of the brain that are associated with odour, ambiguity, strokes, reduced attention, headaches, sensory abnormalities, depression, and mental abilities for few months after the first infection. Therefore, in patients after a severe clinical condition of COVID-19, a deepening of persistent neurological signs is necessary.

Source: Kumar PR, Shilpa B, Jha RK. Brain Disorders: Impact of Mild SARS-CoV-2 May Shrink Several Parts of the Brain. Neurosci Biobehav Rev. 2023 Mar 31;149:105150. doi: 10.1016/j.neubiorev.2023.105150. Epub ahead of print. PMID: 37004892; PMCID: PMC10063523. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063523/ (Full text)

Cortical Grey matter volume depletion links to neurological sequelae in post COVID-19 “long haulers”

Abstract:

Objective: COVID-19 (SARS-CoV-2) has been associated with neurological sequelae even in those patients with mild respiratory symptoms. Patients experiencing cognitive symptoms such as “brain fog” and other neurologic sequelae for 8 or more weeks define “long haulers”. There is limited information regarding damage to grey matter (GM) structures occurring in COVID-19 “long haulers”. Advanced imaging techniques can quantify brain volume depletions related to COVID-19 infection which is important as conventional Brain MRI often fails to identify disease correlates. 3-dimensional voxel-based morphometry (3D VBM) analyzes, segments and quantifies key brain volumes allowing comparisons between COVID-19 “long haulers” and normative data drawn from healthy controls, with values based on percentages of intracranial volume.

Methods: This is a retrospective single center study which analyzed 24 consecutive COVID-19 infected patients with long term neurologic symptoms. Each patient underwent Brain MRI with 3D VBM at median time of 85 days following laboratory confirmation. All patients had relatively mild respiratory symptoms not requiring oxygen supplementation, hospitalization, or assisted ventilation. 3D VBM was obtained for whole brain and forebrain parenchyma, cortical grey matter (CGM), hippocampus, and thalamus.

Results: The results demonstrate a statistically significant depletion of CGM volume in 24 COVID-19 infected patients. Reduced CGM volume likely influences their long term neurological sequelae and may impair post COVID-19 patient’s quality of life and productivity.

Conclusion: This study contributes to understanding effects of COVID-19 infection on patient’s neurocognitive and neurological function, with potential for producing serious long term personal and economic consequences, and ongoing challenges to public health systems.

Source: Rothstein TL. Cortical Grey matter volume depletion links to neurological sequelae in post COVID-19 “long haulers”. BMC Neurol. 2023 Jan 17;23(1):22. doi: 10.1186/s12883-023-03049-1. PMID: 36647063; PMCID: PMC9843113. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9843113/ (Full text)

Prefrontal Structure Varies as a Function of Pain Symptoms in Chronic Fatigue Syndrome

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) is characterized by severe fatigue persisting for ≥6 months and leading to considerable impairment in daily functioning. Neuroimaging studies of patients with CFS have revealed alterations in prefrontal brain morphology. However, it remains to be determined whether these alterations are specific for fatigue or whether they relate to other common CFS symptoms (e.g., chronic pain, lower psychomotor speed, and reduced physical activity).

METHODS: We used magnetic resonance imaging to quantify gray matter volume (GMV) and the N-acetylaspartate and N-acetylaspartylglutamate/creatine ratio (NAA/Cr) in a group of 89 women with CFS. Building on previous reports, we tested whether GMV and NAA/Cr in the dorsolateral prefrontal cortex are associated with fatigue severity, pain, psychomotor speed, and physical activity, while controlling for depressive symptoms. We also considered GMV and NAA/Cr differences between patients with CFS and 26 sex-, age-, and education-matched healthy controls.

RESULTS: The presence of pain symptoms was the main predictor of both GMV and NAA/Cr in the left dorsolateral prefrontal cortex of patients with CFS. More pain was associated with reduced GMVs and NAA/Cr, over and above the effects of fatigue, depressive symptoms, physical activity, and psychomotor speed. In contrast to previous reports and despite a large representative sample, global GMV did not differ between the CFS and healthy control groups.

CONCLUSIONS: CFS, as diagnosed by Centers for Disease Control and Prevention criteria, is not a clinical entity reliably associated with reduced GMV. Individual variation in the presence of pain, rather than fatigue, is associated with neuronal alterations in the dorsolateral prefrontal cortex of patients with CFS.

Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

 

Source: van der Schaaf ME, De Lange FP, Schmits IC, Geurts DE, Roelofs K, van der Meer JW, Toni I, Knoop H. Prefrontal Structure Varies as a Function of Pain Symptoms in Chronic Fatigue Syndrome. Biol Psychiatry. 2017 Feb 15;81(4):358-365. doi: 10.1016/j.biopsych.2016.07.016. Epub 2016 Aug 31. https://www.ncbi.nlm.nih.gov/pubmed/27817843

 

Progressive brain changes in patients with chronic fatigue syndrome: A longitudinal MRI study

Abstract:

PURPOSE: To examine progressive brain changes associated with chronic fatigue syndrome (CFS).

MATERIALS AND METHODS: We investigated progressive brain changes with longitudinal MRI in 15 CFS and 10 normal controls (NCs) scanned twice 6 years apart on the same 1.5 Tesla (T) scanner. MR images yielded gray matter (GM) volumes, white matter (WM) volumes, and T1- and T2-weighted signal intensities (T1w and T2w). Each participant was characterized with Bell disability scores, and somatic and neurological symptom scores. We tested for differences in longitudinal changes between CFS and NC groups, inter group differences between pooled CFS and pooled NC populations, and correlations between MRI and symptom scores using voxel based morphometry. The analysis methodologies were first optimized using simulated atrophy.

RESULTS: We found a significant decrease in WM volumes in the left inferior fronto-occipital fasciculus (IFOF) in CFS while in NCs it was unchanged (family wise error adjusted cluster level P value, PFWE < 0.05). This longitudinal finding was consolidated by the group comparisons which detected significantly decreased regional WM volumes in adjacent regions (PFWE< 0.05) and decreased GM and blood volumes in contralateral regions (PFWE < 0.05). Moreover, the regional GM and WM volumes and T2w in those areas showed significant correlations with CFS symptom scores (PFWE < 0.05).

CONCLUSION: The results suggested that CFS is associated with IFOF WM deficits which continue to deteriorate at an abnormal rate. J. Magn. Reson. Imaging 2016;44:1301-1311.

© 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

 

Source: Shan ZY, Kwiatek R, Burnet R, Del Fante P, Staines DR, Marshall-Gradisnik SM, Barnden LR. Progressive brain changes in patients with chronic fatigue syndrome: A longitudinal MRI study. J Magn Reson Imaging. 2016 Nov;44(5):1301-1311. doi: 10.1002/jmri.25283. Epub 2016 Apr 28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111735/ (Full article)

 

Gray matter volumes in patients with chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is a debilitating and complex disorder characterized by profound fatigue with uncertain pathologic mechanism. Neuroimage may be an important key to unveil the central nervous system (CNS) mechanism in CFS. Although most of the studies found gray matter (GM) volumes reduced in some brain regions in CFS, there are many factors that could affect GM volumes in CFS, including chronic pain, stress, psychiatric disorder, physical activity, and insomnia, which may bias the results. In this paper, through reviewing recent literatures, we discussed these interferential factors, which overlap with the symptoms of CFS.

 

Source: Tang LW, Zheng H, Chen L, Zhou SY, Huang WJ, Li Y, Wu X. Gray matter volumes in patients with chronic fatigue syndrome. Evid Based Complement Alternat Med. 2015;2015:380615. doi: 10.1155/2015/380615. Epub 2015 Feb 22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352504/ (Full article)

 

Regional grey and white matter volumetric changes in myalgic encephalomyelitis (chronic fatigue syndrome): a voxel-based morphometry 3 T MRI study

Abstract:

OBJECTIVE: It is not established whether myalgic encephalomyelitis/chronic fatigue syndrome (CFS) is associated with structural brain changes. The aim of this study was to investigate this by conducting the largest voxel-based morphometry study to date in CFS.

METHODS: High-resolution structural 3 T cerebral MRI scanning was carried out in 26 patients with CFS and 26 age- and gender-matched healthy volunteers. Voxel-wise generalised linear modelling was applied to the processed MR data using permutation-based non-parametric testing, forming clusters at t>2.3 and testing clusters for significance at p<0.05, corrected for multiple comparisons across space.

RESULTS: Significant voxels (p<0.05, corrected for multiple comparisons) depicting reduced grey matter volume in the CFS group were noted in the occipital lobes (right and left occipital poles; left lateral occipital cortex, superior division; and left supracalcrine cortex), the right angular gyrus and the posterior division of the left parahippocampal gyrus. Significant voxels (p<0.05, corrected for multiple comparisons) depicting reduced white matter volume in the CFS group were also noted in the left occipital lobe.

CONCLUSION: These data support the hypothesis that significant neuroanatomical changes occur in CFS, and are consistent with the complaint of impaired memory that is common in this illness; they also suggest that subtle abnormalities in visual processing, and discrepancies between intended actions and consequent movements, may occur in CFS.

 

Source: Puri BK, Jakeman PM, Agour M, Gunatilake KD, Fernando KA, Gurusinghe AI, Treasaden IH, Waldman AD, Gishen P. Regional grey and white matter volumetric changes in myalgic encephalomyelitis (chronic fatigue syndrome): a voxel-based morphometry 3 T MRI study. Br J Radiol. 2012 Jul;85(1015):e270-3. doi: 10.1259/bjr/93889091. Epub 2011 Nov 29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474083/ (Full article)

 

Increase in prefrontal cortical volume following cognitive behavioural therapy in patients with chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is a disabling disorder, characterized by persistent or relapsing fatigue. Recent studies have detected a decrease in cortical grey matter volume in patients with CFS, but it is unclear whether this cerebral atrophy constitutes a cause or a consequence of the disease. Cognitive behavioural therapy (CBT) is an effective behavioural intervention for CFS, which combines a rehabilitative approach of a graded increase in physical activity with a psychological approach that addresses thoughts and beliefs about CFS which may impair recovery.

Here, we test the hypothesis that cerebral atrophy may be a reversible state that can ameliorate with successful CBT. We have quantified cerebral structural changes in 22 CFS patients that underwent CBT and 22 healthy control participants. At baseline, CFS patients had significantly lower grey matter volume than healthy control participants. CBT intervention led to a significant improvement in health status, physical activity and cognitive performance. Crucially, CFS patients showed a significant increase in grey matter volume, localized in the lateral prefrontal cortex. This change in cerebral volume was related to improvements in cognitive speed in the CFS patients.

Our findings indicate that the cerebral atrophy associated with CFS is partially reversed after effective CBT. This result provides an example of macroscopic cortical plasticity in the adult human brain, demonstrating a surprisingly dynamic relation between behavioural state and cerebral anatomy. Furthermore, our results reveal a possible neurobiological substrate of psychotherapeutic treatment.

Comment in: Can CBT substantially change grey matter volume in chronic fatigue syndrome? [Brain. 2009]

 

Source: de Lange FP1, Koers A, Kalkman JS, Bleijenberg G, Hagoort P, van der Meer JW, Toni I. Increase in prefrontal cortical volume following cognitive behavioural therapy in patients with chronic fatigue syndrome. Brain. 2008 Aug;131(Pt 8):2172-80. doi: 10.1093/brain/awn140. Epub 2008 Jun 28. http://brain.oxfordjournals.org/content/131/8/2172.long (Full article)

 

Gray matter volume reduction in the chronic fatigue syndrome

Abstract:

The chronic fatigue syndrome (CFS) is a disabling disorder of unknown etiology. The symptomatology of CFS (central fatigue, impaired concentration, attention and memory) suggests that this disorder could be related to alterations at the level of the central nervous system. In this study, we have used an automated and unbiased morphometric technique to test whether CFS patients display structural cerebral abnormalities.

We mapped structural cerebral morphology and volume in two cohorts of CFS patients (in total 28 patients) and healthy controls (in total 28 controls) from high-resolution structural magnetic resonance images, using voxel-based morphometry. Additionally, we recorded physical activity levels to explore the relation between severity of CFS symptoms and cerebral abnormalities.

We observed significant reductions in global gray matter volume in both cohorts of CFS patients, as compared to matched control participants. Moreover, the decline in gray matter volume was linked to the reduction in physical activity, a core aspect of CFS. These findings suggest that the central nervous system plays a key role in the pathophysiology of CFS and point to a new objective and quantitative tool for clinical diagnosis of this disabling disorder.

 

Source: de Lange FP, Kalkman JS, Bleijenberg G, Hagoort P, van der Meer JW, Toni I. Gray matter volume reduction in the chronic fatigue syndrome. Neuroimage. 2005 Jul 1;26(3):777-81. Epub 2005 Apr 7. http://www.ncbi.nlm.nih.gov/pubmed/15955487

 

Mechanisms underlying fatigue: a voxel-based morphometric study of chronic fatigue syndrome

Abstract:

BACKGROUND: Fatigue is a crucial sensation that triggers rest, yet its underlying neuronal mechanisms remain unclear. Intense long-term fatigue is a symptom of chronic fatigue syndrome, which is used as a model to study the mechanisms underlying fatigue.

METHODS: Using magnetic resonance imaging, we conducted voxel-based morphometry of 16 patients and 49 age-matched healthy control subjects.

RESULTS: We found that patients with chronic fatigue syndrome had reduced gray-matter volume in the bilateral prefrontal cortex. Within these areas, the volume reduction in the right prefrontal cortex paralleled the severity of the fatigue of the subjects.

CONCLUSION: These results are consistent with previous reports of an abnormal distribution of acetyl-L-carnitine uptake, which is one of the biochemical markers of chronic fatigue syndrome, in the prefrontal cortex. Thus, the prefrontal cortex might be an important element of the neural system that regulates sensations of fatigue.

 

Source: Okada T, Tanaka M, Kuratsune H, Watanabe Y, Sadato N. Mechanisms underlying fatigue: a voxel-based morphometric study of chronic fatigue syndrome. BMC Neurol. 2004 Oct 4;4(1):14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC524491/