Replicating human characteristics: A promising animal model of central fatigue

Highlights:

  • A new method: Modified Multiple Platform Method combined with alternate-day fasting.
  • Modeling method has successfully constructed animal model of central fatigue.
  • Our rat model mimics human emotional, cognitive, and physical fatigue.
  • Hippocampus and muscle tissues show damage and mitochondrial changes.
  • Mitochondrial dysfunction and oxidative stress in hippocampus and muscle tissues.

Abstract:

Central fatigue is a common pathological state characterized by psychological loss of drive, lack of appetite, drowsiness, and decreased psychic alertness. The mechanism underlying central fatigue is still unclear, and there is no widely accepted successful animal model that fully represents human characteristics. We aimed to construct a more clinically relevant and comprehensive animal model of central fatigue.

In this study, we utilized the Modified Multiple Platform Method (MMPM) combined with alternate-day fasting (ADF) to create the animal model. The model group rats are placed on a stationary water environment platform for sleep deprivation at a fixed time each day, and they were subjected to ADF treatment. On non-fasting days, the rats were allowed unrestricted access to food. This process was sustained over a period of 21 days.

We evaluated the model using behavioral assessments such as open field test, elevated plus maze testtail suspension testMorris water maze testgrip strength test, and forced swimming test, as well as serum biochemical laboratory indices. Additionally, we conducted pathological observations of the hippocampus and quadriceps muscle tissues, transmission electron microscope observation of mitochondrial ultrastructure, and assessment of mitochondrial energy metabolism and oxidative stress-related markers.

The results revealed that the model rats displayed emotional anomalies resembling symptoms of depression and anxiety, decreased exploratory behavior, decline in learning and memory function, and signs of skeletal muscle fatigue, successfully replicating human features of negative emotions, cognitive decline, and physical fatigue. Pathological damage and mitochondrial ultrastructural alterations were observed in the hippocampus and quadriceps muscle tissues, accompanied by abnormal mitochondrial energy metabolism and oxidative stress in the form of decreased ATP and increased ROS levels.

In conclusion, our ADF+MMPM model comprehensively replicated the features of human central fatigue and is a promising platform for preclinical research. Furthermore, the pivotal role of mitochondrial energy metabolism and oxidative stress damage in the occurrence of central fatigue in the hippocampus and skeletal muscle tissues was corroborated.

Source: Zhang Y, Zhang Z, Yu Q, Lan B, Shi Q, Li R, Jiao Z, Zhang W, Li F. Replicating human characteristics: A promising animal model of central fatigue. Brain Res Bull. 2024 Jun 15;212:110951. doi: 10.1016/j.brainresbull.2024.110951. Epub 2024 Apr 19. PMID: 38642899. https://www.sciencedirect.com/science/article/pii/S0361923024000844 (Full text)

Inhibition of HIF-2α Pathway as a Potential Therapeutic Strategy for Endothelial Dysfunction in Post-COVID Syndrome

Abstract:

Background SARS-CoV-2 infection may lead to Post-COVID Syndrome (PCS), characterized by debilitating symptoms like persistent fatigue, cardiovascular symptoms, and cognitive dysfunction. Persistent endothelial dysfunction (ED) is a potential driver of ongoing symptoms. Yet, the underlying biological mechanisms remain unclear.

Methods In this prospective observational study, we characterized 41 PCS patients and 24 healthy controls (HC, matched out of n = 204, recruited before the pandemic) and investigated the effect of SARS-CoV-2 Spike protein 1 (S1) and plasma from PCS patients on human retinal endothelial cells (HREC).

Results Plasma samples from PCS patients exhibited significantly elevated erythropoietin, VEGF and MCP-1 alongside decreased IL-6 levels compared to HC. Low Haemoglobin and Haematocrit were negatively associated with PCS severity. VEGF levels were positively correlated with Anti-S1 IgG levels in patients and upregulated on mRNA level in HREC exposed to S1. Additionally, S1 exposure promoted ROS production and transiently activated HIF-1α in HREC. Persistent activation of HIF-2α by S1 led to disrupted endothelial integrity. HREC exposed to plasma from severely affected PCS patients showed increased ROS and compromised barrier function. Treatment with Belzutifan, a HIF-2α inhibitor, restored barrier integrity in HREC exposed to S1 or PCS-plasma.

Conclusion These findings suggest that HIF-2α-mediated ED in PCS might be a potential therapeutical target for Belzutifan.

Trial registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT05635552

What Is Known?

  • Endothelial dysfunction (ED) is a consequence of acute SARS-CoV-2 infection and may lead to Post-COVID syndrome (PCS) symptoms.

  • Patients with PCS show elevated inflammation and endothelial dysfunction markers.

  • Spike proteins can persist for up to 12 months post-infection, driving ongoing inflammation and immune activation.

What New Information Does This Article Contribute?

  • Low haemoglobin (Hb) and high VEGF correlate with higher Anti-S1 IgG and low Hb is associated with higher C19-YRS severity score.

  • PCS patients exhibit higher Erythropoietin (EPO) levels when compared to HC.

  • Spike protein 1 (S1) alone and PCS patient’s plasma induce endothelial dysfunction primarily through HIF-2α activation.

  • Both S1 and PCS plasma cause oxidative stress and disrupting endothelial integrity.

  • Inhibition of HIF-2α effectively restores endothelial barrier integrity disrupted by S1 and PCS plasma.

What New Information Does This Article Contribute? Persistent circulation of spike proteins can sustain chronic inflammation and immune activation in patients with PCS. Here we show that plasma from PCS patients exhibits significantly elevated levels of VEGF which positively correlates with Anti-S1 IgG. Low haemoglobin was associated with higher Anti-S1 IgG titres and correlated with a higher C19-YRS severity score. Levels of EPO were higher in PCS patients, with a more pronounced effect observed in patients with cardiovascular symptoms. In human retinal endothelial cells, both S1 and plasma from PCS patients primarily induce ED through HIF-2α activation, rather than NF-κB. Both factors lead to significant oxidative stress, evidenced by increased ROS production which in turn disrupts endothelial barrier integrity and function. Notably, Belzutifan, a HIF-2α inhibitor, can restore this compromised endothelial function, offering a potential therapeutic target for PCS.

Source: Andrea Ribeiro, Timon Kuchler, Maciej Lech, Javier Carbajo-Lozoya, Kristina Adorjan, Hans Christian Stubbe, Martina Seifert, Anna Wöhnle, Veronika Kesseler, Johanna Negele, Uwe Heemann, Christoph Schmaderer. Inhibition of HIF-2α Pathway as a Potential Therapeutic Strategy for Endothelial Dysfunction in Post-COVID Syndrome medRxiv 2024.09.10.24313403; doi: https://doi.org/10.1101/2024.09.10.24313403 https://www.medrxiv.org/content/10.1101/2024.09.10.24313403v1.full-text (Full text)

Towards an understanding of physical activity-induced post-exertional malaise: Insights into microvascular alterations and immunometabolic interactions in post-COVID condition and myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Background: A considerable number of patients who contracted SARS-CoV-2 are affected by persistent multi-systemic symptoms, referred to as Post-COVID Condition (PCC). Post-exertional malaise (PEM) has been recognized as one of the most frequent manifestations of PCC and is a diagnostic criterion of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Yet, its underlying pathomechanisms remain poorly elucidated.

Purpose and methods: In this review, we describe current evidence indicating that key pathophysiological features of PCC and ME/CFS are involved in physical activity-induced PEM.

Results: Upon physical activity, affected patients exhibit a reduced systemic oxygen extraction and oxidative phosphorylation capacity. Accumulating evidence suggests that these are mediated by dysfunctions in mitochondrial capacities and microcirculation that are maintained by latent immune activation, conjointly impairing peripheral bioenergetics. Aggravating deficits in tissue perfusion and oxygen utilization during activities cause exertional intolerance that are frequently accompanied by tachycardia, dyspnea, early cessation of activity and elicit downstream metabolic effects. The accumulation of molecules such as lactate, reactive oxygen species or prostaglandins might trigger local and systemic immune activation. Subsequent intensification of bioenergetic inflexibilities, muscular ionic disturbances and modulation of central nervous system functions can lead to an exacerbation of existing pathologies and symptoms.

Source: Haunhorst S, Dudziak D, Scheibenbogen C, Seifert M, Sotzny F, Finke C, Behrends U, Aden K, Schreiber S, Brockmann D, Burggraf P, Bloch W, Ellert C, Ramoji A, Popp J, Reuken P, Walter M, Stallmach A, Puta C. Towards an understanding of physical activity-induced post-exertional malaise: Insights into microvascular alterations and immunometabolic interactions in post-COVID condition and myalgic encephalomyelitis/chronic fatigue syndrome. Infection. 2024 Sep 6. doi: 10.1007/s15010-024-02386-8. Epub ahead of print. PMID: 39240417. https://link.springer.com/article/10.1007/s15010-024-02386-8 (Full text)

Oxidative Stress is a shared characteristic of ME/CFS and Long COVID

Abstract:

More than 65 million individuals worldwide are estimated to have Long COVID (LC), a complex multisystemic condition, wherein patients of all ages report fatigue, post-exertional malaise, and other symptoms resembling myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). With no current treatments or reliable diagnostic markers, there is an urgent need to define the molecular underpinnings of these conditions.

By studying bioenergetic characteristics of peripheral blood lymphocytes in over 16 healthy controls, 15 ME/CFS, and 15 LC, we find both ME/CFS and LC donors exhibit signs of elevated oxidative stress, relative to healthy controls, especially in the memory subset. Using a combination of flow cytometry, bulk RNA-seq analysis, mass spectrometry, and systems chemistry analysis, we also observed aberrations in ROS clearance pathways including elevated glutathione levels, decreases in mitochondrial superoxide dismutase levels, and glutathione peroxidase 4 mediated lipid oxidative damage.

Critically, these changes in redox pathways show striking sex-specific trends. While females diagnosed with ME/CFS exhibit higher total ROS and mitochondrial calcium levels, males with an ME/CFS diagnosis have normal ROS levels, but larger changes in lipid oxidative damage. Further analyses show that higher ROS levels correlates with hyperproliferation of T cells in females, consistent with the known role of elevated ROS levels in the initiation of proliferation. This hyperproliferation of T cells can be attenuated by metformin, suggesting this FDA-approved drug as a possible treatment, as also suggested by a recent clinical study of LC patients.

Thus, we report that both ME/CFS and LC are mechanistically related and could be diagnosed with quantitative blood cell measurements. We also suggest that effective, patient tailored drugs might be discovered using standard lymphocyte stimulation assays.

Source: Vishnu Shankar, Julie Wilhelmy, Basil Michael, Layla Cervantes, Vamsee Mallajosyula, Ronald Davis, Michael Snyder, Shady Younis,
William H Robinson, Sadasivan Shankar, Paul Mischel, Hector Bonilla, Mark Davis. Oxidative Stress is a shared characteristic of ME/CFS and Long COVID. bioRxiv 2024.05.04.592477; doi: https://doi.org/10.1101/2024.05.04.592477  https://www.biorxiv.org/content/10.1101/2024.05.04.592477v1https://www.biorxiv.org/content/10.1101/2024.05.04.592477v1 (Full text available as PDF file)

SARS-CoV-2 Mitochondrial Metabolic and Epigenomic Reprogramming in COVID-19

Abstract:

To determine the effects of SARS-CoV-2 infection on cellular metabolism, we conducted an exhaustive survey of the cellular metabolic pathways modulated by SARS-CoV-2 infection and confirmed their importance for SARS-CoV-2 propagation by cataloging the effects of specific pathway inhibitors. This revealed that SARS-CoV-2 strongly inhibits mitochondrial oxidative phosphorylation (OXPHOS) resulting in increased mitochondrial reactive oxygen species (mROS) production.

The elevated mROS stabilizes HIF-1α which redirects carbon molecules from mitochondrial oxidation through glycolysis and the pentose phosphate pathway (PPP) to provide substrates for viral biogenesis. mROS also induces the release of mitochondrial DNA (mtDNA) which activates innate immunity. The restructuring of cellular energy metabolism is mediated in part by SARS-CoV-2 Orf8 and Orf10 whose expression restructures nuclear DNA (nDNA) and mtDNA OXPHOS gene expression.

These viral proteins likely alter the epigenome, either by directly altering histone modifications or by modulating mitochondrial metabolite substrates of epigenome modification enzymes, potentially silencing OXPHOS gene expression and contributing to long-COVID.

Source: Guarnieri JW, Haltom JA, Albrecht YES, Lie T, Olali AZ, Widjaja GA, Ranshing SS, Angelin A, Murdock D, Wallace DC. SARS-CoV-2 Mitochondrial Metabolic and Epigenomic Reprogramming in COVID-19. Pharmacol Res. 2024 Apr 11:107170. doi: 10.1016/j.phrs.2024.107170. Epub ahead of print. PMID: 38614374. https://www.sciencedirect.com/science/article/pii/S1043661824001142 (Full text)

The molecular fingerprint of neuroinflammation in COVID-19: A comprehensive discussion on molecular mechanisms of neuroinflammation due to SARS-COV2 antigens

Abstract:

Background and objective: Severe acute respiratory syndrome coronavirus 2 attacks the neural system directly and indirectly via various systems, such as the nasal cavity, olfactory system, and facial nerves. Considering the high energy requirement, lack of antioxidant defenses, and high amounts of metal ions in the brain, oxidative damage is very harmful to the brain. Various neuropathic pain conditions, neurological disorders, and neuropsychiatric complications were reported in Coronavirus disease 2019, prolonged Coronavirus disease 2019, and after Coronavirus disease 2019 immunization. This manuscript offers a distinctive outlook on the interconnectedness between neurology and neuropsychiatry through its meticulous analysis of complications.

Discussion: After recovering from Coronavirus disease 2019, approximately half of the patients reported developing Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Long Coronavirus disease 2019 imaging reports illustrated the hypometabolism in various parts of the brain, such as olfactory bulbs, limbic/paralimbic domains, the brainstem, and the cerebellum. Ninety imaging and neuropathological studies of Coronavirus disease 2019 have shown evidence of white matter, brainstem, frontotemporal, and oculofrontal lesions. Emotional functions, such as pleasant, long/short-term memory, movement, cognition and cognition in decision-making are controlled by these regions. The neuroinflammation and the mechanisms of defense are well presented in the discussion. The role of microglia activation, Inducible NO synthase, Cyclooxygenases ½, Reactive oxygen species, neurotoxic toxins and pro-inflammatory cytokines, such as Interleukin-1 beta, Interleukin-6 and Tumor Necrosis Factor-alpha are highlighted in neuronal dysfunction and death. Nuclear factor kappa-light-chain-enhancer of activated B cells, Mitogen-activated protein kinase, Activator Protein 1, and Interferon regulatory factors are the main pathways involved in microglia activation in Coronavirus disease 2019 neuroinflammation.

Conclusion: The neurological aspect of Coronavirus disease 2019 should be highlighted. Neurological, psychological, and behavioral aspects of Coronavirus disease 2019, prolonged Coronavirus disease 2019, and Coronavirus disease 2019 vaccines can be the upcoming issues. We need a global awareness where this aspect of the disease should be more considered in health research.

Source: Zayeri ZD, Torabizadeh M, Kargar M, Kazemi H. The molecular fingerprint of neuroinflammation in COVID-19: A comprehensive discussion on molecular mechanisms of neuroinflammation due to SARS-COV2 antigens. Behav Brain Res. 2024 Jan 20;462:114868. doi: 10.1016/j.bbr.2024.114868. Epub ahead of print. PMID: 38246395. https://www.sciencedirect.com/science/article/abs/pii/S016643282400024X

Innate Immune Activation and Mitochondrial ROS Invoke Persistent Cardiac Conduction System Dysfunction after COVID-19

Abstract:

Background Cardiac risk rises during acute SARS-CoV-2 infection and in long COVID syndrome in humans, but the mechanisms behind COVID-19-linked arrhythmias are unknown. This study explores the acute and long term effects of SARS-CoV-2 on the cardiac conduction system (CCS) in a hamster model of COVID-19.

Methods Radiotelemetry in conscious animals was used to non-invasively record electrocardiograms and subpleural pressures after intranasal SARS-CoV-2 infection. Cardiac cytokines, interferon-stimulated gene expression, and macrophage infiltration of the CCS, were assessed at 4 days and 4 weeks post-infection. A double-stranded RNA mimetic, polyinosinic:polycytidylic acid (PIC), was used in vivo and in vitro to activate viral pattern recognition receptors in the absence of SARS-CoV-2 infection.

Results COVID-19 induced pronounced tachypnea and severe cardiac conduction system (CCS) dysfunction, spanning from bradycardia to persistent atrioventricular block, although no viral protein expression was detected in the heart. Arrhythmias developed rapidly, partially reversed, and then redeveloped after the pulmonary infection was resolved, indicating persistent CCS injury. Increased cardiac cytokines, interferon-stimulated gene expression, and macrophage remodeling in the CCS accompanied the electrophysiological abnormalities. Interestingly, the arrhythmia phenotype was reproduced by cardiac injection of PIC in the absence of virus, indicating that innate immune activation was sufficient to drive the response. PIC also strongly induced cytokine secretion and robust interferon signaling in hearts, human iPSC-derived cardiomyocytes (hiPSC-CMs), and engineered heart tissues, accompanied by alterations in electrical and Ca2+ handling properties. Importantly, the pulmonary and cardiac effects of COVID-19 were blunted by in vivo inhibition of JAK/STAT signaling or by a mitochondrially-targeted antioxidant.

Conclusions The findings indicate that long term dysfunction and immune cell remodeling of the CCS is induced by COVID-19, arising indirectly from oxidative stress and excessive activation of cardiac innate immune responses during infection, with implications for long COVID Syndrome.

Source: Deepthi Ashok, Ting Liu, Joseph Criscione, Meghana Prakash, Byunggik Kim, Julian Chow, Morgan Craney, Kyriakos N. Papanicolaou, Agnieszka Sidor, D. Brian Foster, Andrew Pekosz, Jason Villano, Deok-Ho Kim, Brian O’Rourke. Innate Immune Activation and Mitochondrial ROS Invoke Persistent Cardiac Conduction System Dysfunction after COVID-19.

Microvascular Capillary and Precapillary Cardiovascular Disturbances Strongly Interact to Severely Affect Tissue Perfusion and Mitochondrial Function in ME/CFS Evolving from the Post COVID-19 Syndrome

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a frequent, debilitating and still enigmatic disease. There is a broad overlap in the symptomatology of ME/CFS and the Post-COVID Syndrome (PCS). A fraction of the PCS patients develops the full clinical picture of ME/CFS.
New observations in microvessels and blood from patients suffering from PCS have appeared and include microclots and malformed pathological blood cells. Capillary blood flow is impaired not only by pathological blood components but also by prothrombotic changes in the vascular wall, endothelial dysfunction, and expression of adhesion molecules in the capillaries. These disturbances can finally cause a low capillary flow and even capillary stasis. A low cardiac stroke volume due to hypovolemia and the inability of the capacitance vessels to adequately constrict to deliver the necessary cardiac preload generate an unfavorable low precapillary perfusion pressure.
Furthermore, a predominance of vasoconstrictor over vasodilator influences exists, in which sympathetic hyperactivity and endothelial dysfunction play a strong role, causing constriction of resistance vessels and of precapillary sphincters which leads to a fall in capillary pressure behind the sphincters. The interaction of these two precapillary cardiovascular mechanisms causing a low capillary perfusion pressure is hemodynamically highly unfavorable in the presence of a primary capillary stasis already caused by the pathological blood components and their interaction with the capillary wall, to severely impair organ perfusion.
The detrimental coincidence of the microcirculatory with the precapillary cardiovascular disturbances may constitute the key disturbance of the Post-COVID-19 syndrome and finally lead to ME/CFS in pre-disposed patients because the interaction causes a particular kind of perfusion disturbance – capillary ischemia-reperfusion – which has a high potential of causing mitochondrial dysfunction by inducing sodium- and calcium-overload in skeletal muscles. The latter in turns worsens the vascular situation by the generation of reactive oxygen species to close a vicious cycle from which the patient can hardly escape.
Source: Wirth, K.J.; Löhn, M. Microvascular Capillary and Precapillary Cardiovascular Disturbances Strongly Interact to Severely Affect Tissue Perfusion and Mitochondrial Function in ME/CFS Evolving from the Post COVID-19 Syndrome. Preprints 2023, 2023120791. https://doi.org/10.20944/preprints202312.0791.v1  https://www.preprints.org/manuscript/202312.0791/v1 (Full text available as PDF file)

Hyperbaric Oxygen Therapy Counters Oxidative Stress/Inflammation-Driven Symptoms in Long COVID-19 Patients: Preliminary Outcomes

Abstract:

Long COVID-19 patients show systemic inflammation and persistent symptoms such as fatigue and malaise, profoundly affecting their quality of life. Since improving oxygenation can oppose inflammation at multiple tissue levels, we hypothesized that hyperbaric oxygen therapy (HBOT) could arrest inflammation progression and thus relieve symptoms of COVID-19.
We evaluated oxy-inflammation biomarkers in long COVID-19 subjects treated with HBOT and monitored with non-invasive methods. Five subjects (two athletes and three patients with other comorbidities) were assigned to receive HBOT: 100% inspired O2 at 2.4 ATA in a multiplace hyperbaric chamber for 90 min (three athletes: 15 HBOT × 5 days/wk for 3 weeks; two patients affected by Idiopathic Sudden Sensorineural Hearing Loss: 30 HBOT × 5 days/wk for 6 weeks; and one patient with osteomyelitis: 30 HBOT × 5 days/wk for week for 6 weeks and, after a 30-day break, followed by a second cycle of 20 HBOT).
Using saliva and/or urine samples, reactive oxygen species (ROS), antioxidant capacity, cytokines, lipids peroxidation, DNA damage, and renal status were assessed at T1_pre (basal level) and at T2_pre (basal level after treatment), and the results showed attenuated ROS production, lipid peroxidation, DNA damage, NO metabolites, and inflammation biomarker levels, especially in the athletes post-treatment. Thus, HBOT may represent an alternative non-invasive method for treating long COVID-19-induced long-lasting manifestations of oxy-inflammation.
Source: Mrakic-Sposta S, Vezzoli A, Garetto G, Paganini M, Camporesi E, Giacon TA, Dellanoce C, Agrimi J, Bosco G. Hyperbaric Oxygen Therapy Counters Oxidative Stress/Inflammation-Driven Symptoms in Long COVID-19 Patients: Preliminary Outcomes. Metabolites. 2023; 13(10):1032. https://doi.org/10.3390/metabo13101032 https://www.mdpi.com/2218-1989/13/10/1032 (Full text)

Potential Prion Involvement in Long COVID-19 Neuropathology, Including Behavior

Abstract:

Prion is a term used to describe a protein infectious particle responsible for several neurodegenerative diseases in mammals, e.g., Creutzfeldt-Jakob disease. The novelty is that it is protein based infectious agent not involving a nucleic acid genome as found in viruses and bacteria.

Prion disorders exhibit, in part, incubation periods, neuronal loss, and induce abnormal folding of specific normal cellular proteins due to enhancing reactive oxygen species associated with mitochondria energy metabolism. These agents may also induce memory, personality and movement abnormalities as well as depression, confusion and disorientation.

Interestingly, some of these behavioral changes also occur in COVID-19 and mechanistically include mitochondrial damage caused by SARS-CoV-2 and subsequent production of reactive oxygen species. Taken together, we surmise, in part, long COVID may involve the induction of spontaneous prion emergence, especially in individuals susceptible to its origin may thus explain some of its manisfestions post-acute viral infection.

Source: Stefano GB, Büttiker P, Weissenberger S, Anders M, Raboch J, Ptacek R, Kream RM. Potential Prion Involvement in Long COVID-19 Neuropathology, Including Behavior. Cell Mol Neurobiol. 2023 Mar 28:1–6. doi: 10.1007/s10571-023-01342-8. Epub ahead of print. PMID: 36977809; PMCID: PMC10047479. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047479/ (Full text)