Long-term neurological implications of severe acute respiratory syndrome coronavirus 2 infections in neonates: Innate immune memory and chronic neuroinflammation

Abstract:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause long-term neurological complications in adults. However, the mechanisms by which early-life SARS-CoV-2 infection increases the risk of abnormal neurodevelopment remain unknown.

Recent studies have shown an association with chronic proinflammatory cytokine/chemokine production in the central nervous system (CNS). Therefore, it was hypothesised that innate immune activation and induction of innate immune memory may play a potential role in the neonatal brain. Haematopoietic stem cells in the bone marrow are exposed to SARS-CoV-2, SARS-CoV-2 envelope protein (E protein), lipopolysaccharide (LPS)-bound spike proteins (S1 and S2 proteins), and damage-associated molecular patterns (DAMPs). Myeloid progenitors enter the stroma of the choroid plexus and are further directed to incessantly supply the brain parenchyma with resident innate immune cells. The S proteins-LPS complex can cross the blood–brain barrier and plays an important role in microglial and astrocytic inflammatory responses and innate immune memory.

Persistently activated microglia with memory release pro-inflammatory cytokines/chemokines which contribute to abnormal synaptic development in the frontal lobe and cerebellum, potentially leading to long-term neurological complications, similar to those observed in autism spectrum disorder (ASD). In addition, this hypothesis suggests that bacterial and fungal products may act as adjuvants to S proteins and may also explain why S proteins alone are insufficient to induce neuroinflammation in neonates.

Source: Tatsuro Nobutoki. Long-term neurological implications of severe acute respiratory syndrome coronavirus 2 infections in neonates: Innate immune memory and chronic neuroinflammation. Medical Hypotheses, Volume 181, December 2023, 111204 https://www.sciencedirect.com/science/article/pii/S0306987723002001 (Full text)

Cytometry profiling of ex vivo recall responses to Coxiella burnetii in previously naturally exposed individuals reveals long-term changes in both adaptive and innate immune cellular compartments

Abstract:

Introduction: Q fever, caused by the intracellular bacterium Coxiella burnetii, is considered an occupational and biodefense hazard and can result in debilitating long-term complications. While natural infection and vaccination induce humoral and cellular immune responses, the exact nature of cellular immune responses to C. burnetii is incompletely understood. The current study seeks to investigate more deeply the nature of long-term cellular recall responses in naturally exposed individuals by both cytokine release assessment and cytometry profiling.

Methods: Individuals exposed during the 2007-2010 Dutch Q fever outbreak were grouped in 2015, based on a C. burnetii-specific IFNγ release assay (IGRA), serological status, and self-reported clinical symptoms during initial infection, into asymptomatic IGRA-negative/seronegative controls, and three IGRA-positive groups (seronegative/asymptomatic; seropositive/asymptomatic and seropositive/symptomatic). Recall responses following in vitro re-stimulation with heat-inactivated C. burnetii in whole blood, were assessed in 2016/2017 by cytokine release assays (n=55) and flow cytometry (n=36), and in blood mononuclear cells by mass cytometry (n=36).

Results: Cytokine release analysis showed significantly elevated IL-2 responses in all seropositive individuals and elevated IL-1β responses in those recovered from symptomatic infection. Comparative flow cytometry analysis revealed significantly increased IFNγ, TNFα and IL-2 recall responses by CD4 T cells and higher IL-6 production by monocytes from symptomatic, IGRA-positive/seropositive individuals compared to controls. Mass cytometry profiling and unsupervised clustering analysis confirmed recall responses in seropositive individuals by two activated CD4 T cell subsets, one characterized by a strong Th1 cytokine profile (IFNγ+IL-2+TNFα+), and identified C. burnetii-specific activation of CD8 T cells in all IGRA-positive groups. Remarkably, increased C. burnetii-specific responses in IGRA-positive individuals were also observed in three innate cell subpopulations: one characterized by an IFNγ+IL-2+TNFα+ Th1 cytokine profile and lack of canonical marker expression, and two IL-1β-, IL-6- and IL-8-producing CD14+ monocyte subsets that could be the drivers of elevated secretion of innate cytokines in pre-exposed individuals.

Discussion: These data highlight that there are long-term increased responses to C. burnetii in both adaptive and innate cellular compartments, the latter being indicative of trained immunity. These findings warrant future studies into the protective role of these innate responses and may inform future Q fever vaccine design.

Source: Raju Paul S, Scholzen A, Reeves PM, Shepard R, Hess JM, Dzeng RK, Korek S, Garritsen A, Poznansky MC, Sluder AE. Cytometry profiling of ex vivo recall responses to Coxiella burnetii in previously naturally exposed individuals reveals long-term changes in both adaptive and innate immune cellular compartments. Front Immunol. 2023 Oct 11;14:1249581. doi: 10.3389/fimmu.2023.1249581. PMID: 37885896; PMCID: PMC10598782. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598782/ (Full text)

Role of Microglia, Decreased Neurogenesis and Oligodendrocyte Depletion in Long COVID-Mediated Brain Impairments

Abstract:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a recent worldwide coronavirus disease-2019 (COVID-19) pandemic. SARS-CoV-2 primarily causes an acute respiratory infection but can progress into significant neurological complications in some. Moreover, patients with severe acute COVID-19 could develop debilitating long-term sequela.

Long-COVID is characterized by chronic symptoms that persist months after the initial infection. Common complaints are fatigue, myalgias, depression, anxiety, and “brain fog,” or cognitive and memory impairments. A recent study demonstrated that a mild COVID-19 respiratory infection could generate elevated proinflammatory cytokines and chemokines in the cerebral spinal fluid.

This commentary discusses findings from this study, demonstrating that even a mild respiratory SARS-CoV-2 infection can cause considerable neuroinflammation with microglial and macrophage reactivity. Such changes could also be gleaned by measuring chemokines and cytokines in the circulating blood. Moreover, neuroinflammation caused by mild SARS-CoV-2 infection can also impair hippocampal neurogenesis, deplete oligodendrocytes, and decrease myelinated axons.

All these changes likely contribute to cognitive deficits in long-COVID syndrome. Therefore, strategies capable of restraining neuroinflammation, maintaining better hippocampal neurogenesis, and preserving oligodendrocyte lineage differentiation and maturation may prevent or reduce the incidence of long-COVID after SARS-CoV-2 respiratory infection.

Source: Wei ZD, Liang K, Shetty AK. Role of Microglia, Decreased Neurogenesis and Oligodendrocyte Depletion in Long COVID-Mediated Brain Impairments. Aging Dis. 2023 Sep 24. doi: 10.14336/AD.2023.10918. Epub ahead of print. PMID: 37815903. https://www.aginganddisease.org/EN/10.14336/AD.2023.10918 (Full text)

A brief overview of SARS-CoV-2 infection and its management strategies: a recent update

Abstract:

The COVID-19 pandemic has become a global health crisis, inflicting substantial morbidity and mortality worldwide. A diverse range of symptoms, including fever, cough, dyspnea, and fatigue, characterizes COVID-19. A cytokine surge can exacerbate the disease’s severity. This phenomenon involves an increased immune response, marked by the excessive release of inflammatory cytokines like IL-6, IL-8, TNF-α, and IFNγ, leading to tissue damage and organ dysfunction.

Efforts to reduce the cytokine surge and its associated complications have garnered significant attention. Standardized management protocols have incorporated treatment strategies, with corticosteroids, chloroquine, and intravenous immunoglobulin taking the forefront. The recent therapeutic intervention has also assisted in novel strategies like repurposing existing medications and the utilization of in vitro drug screening methods to choose effective molecules against viral infections.

Beyond acute management, the significance of comprehensive post-COVID-19 management strategies, like remedial measures including nutritional guidance, multidisciplinary care, and follow-up, has become increasingly evident. As the understanding of COVID-19 pathogenesis deepens, it is becoming increasingly evident that a tailored approach to therapy is imperative.

This review focuses on effective treatment measures aimed at mitigating COVID-19 severity and highlights the significance of comprehensive COVID-19 management strategies that show promise in the battle against COVID-19.

Source: Das A, Pathak S, Premkumar M, Sarpparajan CV, Balaji ER, Duttaroy AK, Banerjee A. A brief overview of SARS-CoV-2 infection and its management strategies: a recent update. Mol Cell Biochem. 2023 Sep 24. doi: 10.1007/s11010-023-04848-3. Epub ahead of print. PMID: 37742314. https://link.springer.com/article/10.1007/s11010-023-04848-3 (Full text)

Proximal immune-epithelial progenitor interactions drive chronic tissue sequelae post COVID-19

Abstract:

The long-term health effects of SARS-CoV-2, termed Post-Acute Sequelae of COVID-19 (PASC), are quickly evolving into a major public health concern, but the underlying cellular and molecular etiology remain poorly defined. There is growing evidence that PASC is linked to abnormal immune responses and/or poor organ recovery post-infection. However, the exact processes linking non-resolving inflammation, impaired tissue repair, and PASC are still unclear.

In this report, we utilized a cohort of respiratory PASC patients with viral infection-mediated pulmonary fibrosis and a clinically relevant mouse model of post-viral lung sequelae to investigate the pathophysiology of respiratory PASC. Using a combination of imaging and spatial transcriptomics, we identified dysregulated proximal interactions between immune cells and epithelial progenitors unique to respiratory PASC but not acute COVID-19 or idiopathic pulmonary fibrosis (IPF). Specifically, we found a central role for lung-resident CD8+ T cell-macrophage interactions in maintaining Krt8hi transitional and ectopic Krt5+ basal cell progenitors, and the development of fibrotic sequelae after acute viral pneumonia.

Mechanistically, CD8+ T cell derived IFN-γ and TNF stimulated lung macrophages to chronically release IL-1β, resulting in the abnormal accumulation of dysplastic epithelial progenitors in fibrotic areas. Notably, therapeutic neutralization of IFN-γ and TNF, or IL-1β after the resolution of acute infection resulted in markedly improved alveolar regeneration and restoration of pulmonary function.

Together, our findings implicate a dysregulated immune-epithelial progenitor niche in driving respiratory PASC and identify potential therapeutic targets to dampen chronic pulmonary sequelae post respiratory viral infections including SARS-CoV-2.

Source: Narasimhan H, Cheon IS, Qian W, Hu S, Parimon T, Li C, Goplen N, Wu Y, Wei X, Son YM, Fink E, Santos G, Tang J, Yao C, Muehling L, Canderan G, Kadl A, Cannon A, Pramoonjago P, Shim YM, Woodfolk J, Zang C, Chen P, Sun J. Proximal immune-epithelial progenitor interactions drive chronic tissue sequelae post COVID-19. bioRxiv [Preprint]. 2023 Sep 14:2023.09.13.557622. doi: 10.1101/2023.09.13.557622. PMID: 37745354; PMCID: PMC10515929. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515929/ (Full text)

Increased SARS-CoV-2 reactive low avidity T cells producing inflammatory cytokines in pediatric post-acute COVID-19 sequelae (PASC)

Abstract:

Background: A proportion of the convalescent SARS-CoV-2 pediatric population presents nonspecific symptoms, mental health problems and a reduction in quality of life similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID-19 symptomatic. However, data regarding its clinical manifestation and immune mechanisms are currently scarce.

Methods: In this study, we perform a comprehensive clinical and immunological profiling of 17 convalescent COVID-19 children with post-acute COVID-19 sequelae (PASC) manifestation and 13 convalescent children without PASC manifestation. A detailed medical history, blood and instrumental tests and physical examination were obtained from all patients. SARSCoV-2 reactive T cell response was analyzed via multiparametric flowcytometry and the humoral immunity was addressed via pseudovirus neutralization and ELISA assay.

Results: The most common PASC symptoms were shortness of breath/exercise intolerance, paresthesia, smell/taste disturbance, chest pain, dyspnea, headache and lack of concentration. Blood count and clinical chemistry showed no statistical differences among the study groups. We detected higher frequencies of spike (S) reactive CD4+ and CD8+ T cells among the PASC study group, characterized by TNFα and IFNγ production and low functional avidity. CRP levels are positively correlated with IFNγ producing reactive CD8+ T cells.

Conclusions: Our data might indicate a possible involvement of a persistent cellular inflammatory response triggered by SARS-CoV-2 in the development of the observed sequelae in pediatric PASC. These results may have implications on future therapeutic and prevention strategies.

Source: Krystallenia Paniskaki, et al. Increased SARS-CoV-2 reactive low avidity T cells producing inflammatory cytokines in pediatric post-acute COVID-19 sequelae (PASC) https://d197for5662m48.cloudfront.net/documents/publicationstatus/144335/preprint_pdf/a855de5e766f9457795050e56413075a.pdf (Full text)

Circulating Reelin promotes inflammation and modulates disease activity in acute and long COVID-19 cases

Abstract:

Thromboembolic complications and excessive inflammation are frequent in severe COVID-19, potentially leading to long COVID. In non-COVID studies, we and others demonstrated that circulating Reelin promotes leukocyte infiltration and thrombosis. Thus, we hypothesized that Reelin participates in endothelial dysfunction and hyperinflammation during COVID-19.

We showed that Reelin was increased in COVID-19 patients and correlated with the disease activity. In the severe COVID-19 group, we observed a hyperinflammatory state, as judged by increased concentration of cytokines (IL-1α, IL-4, IL-6, IL-10 and IL-17A), chemokines (IP-10 and MIP-1β), and adhesion markers (E-selectin and ICAM-1).

Reelin level was correlated with IL-1α, IL-4, IP-10, MIP-1β, and ICAM-1, suggesting a specific role for Reelin in COVID-19 progression. Furthermore, Reelin and all of the inflammatory markers aforementioned returned to normal in a long COVID cohort, showing that the hyperinflammatory state was resolved. Finally, we tested Reelin inhibition with the anti-Reelin antibody CR-50 in hACE2 transgenic mice infected with SARS-CoV-2. CR-50 prophylactic treatment decreased mortality and disease severity in this model.

These results demonstrate a direct proinflammatory function for Reelin in COVID-19 and identify it as a drug target. This work opens translational clinical applications in severe SARS-CoV-2 infection and beyond in auto-inflammatory diseases.

Source: Calvier L, Drelich A, Hsu J, Tseng CT, Mina Y, Nath A, Kounnas MZ, Herz J. Circulating Reelin promotes inflammation and modulates disease activity in acute and long COVID-19 cases. Front Immunol. 2023 Jun 27;14:1185748. doi: 10.3389/fimmu.2023.1185748. PMID: 37441066; PMCID: PMC10333573. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333573/ (Full text)

Correlation between Hepatocyte Growth Factor (HGF) with D-Dimer and Interleukin-6 as Prognostic Markers of Coagulation and Inflammation in Long COVID-19 Survivors

Abstract:

In general, an individual who experiences the symptoms of Severe Acute Respiratory Syndrome Coronavirus 2 or SARS-CoV-2 infection is declared as recovered after 2 weeks. However, approximately 10–20% of these survivors have been reported to encounter long-term health problems, defined as ‘long COVID-19’, e.g., blood coagulation which leads to stroke with an estimated incidence of 3%, and pulmonary embolism with 5% incidence.
At the time of infection, the immune response produces pro-inflammatory cytokines that stimulate stromal cells to produce pro-hepatocyte growth factor (pro-HGF) and eventually is activated into hepatocyte growth factor (HGF), which helps the coagulation process in endothelial and epithelial cells. HGF is a marker that appears as an inflammatory response that leads to coagulation.
Currently, there is no information on the effect of SARS-CoV-2 infection on serum HGF concentrations as a marker of the prognosis of coagulation in long COVID-19 survivors. This review discusses the pathophysiology between COVID-19 and HGF, IL-6, and D-dimer.
Source: Zaira B, Yulianti T, Levita J. Correlation between Hepatocyte Growth Factor (HGF) with D-Dimer and Interleukin-6 as Prognostic Markers of Coagulation and Inflammation in Long COVID-19 Survivors. Current Issues in Molecular Biology. 2023; 45(7):5725-5740. https://doi.org/10.3390/cimb45070361 https://www.mdpi.com/1467-3045/45/7/361 (Full text)

A Thesis on Immune Differences in Chronic Fatigue Syndrome, Fibromyalgia and Healthy Controls

Abstract:

Background: Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM) are debilitating disorders that significantly affect the daily lives of those suffering from them, as well as their loved ones. Both conditions have overlapping clinical features that resemble inflammatory disorders, and overlapping symptoms, such as depression, suggest central nervous system (CNS) involvement. The role of the immune system’s soluble messengers in the pathogenesis of CFS and FM has been under investigation, but so far the results are inconclusive. In addition, there is growing evidence that the kynurenine pathway is involved in the pathology of diseases related to the CNS, yet the role of each metabolite is not clear. The relationship between kynurenine metabolism and CFS and FM has not been extensively explored. Few studies have simultaneously examined the immunological status in both CFS and FM, making this thesis the first to comprehensively evaluate the potential distinct immunological differences between the two disorders.

Objective: The objective of this study was to compare the CFS and FM with healthy controls, regarding the levels of several soluble blood markers related to the immune system. The markers chosen were:

  • The inflammatory marker high-sensitive CRP (hsCRP)
  • The following cytokines and chemokines: Interferon (IFN)-γ, Interleukin (IL)-1β, IL1ra, IL-4, IL-6, IL-8, IL-10, IL-17, Interferon gamma-induced protein (IP)-10, Monocyte Chemoattractant Protein (MCP)-1, Transforming Growth Factor (TGF)-β1, TGF-β2, TGF-β3 and Tumour Necrosis Factor (TNF)-α
  • The metabolites and their ratios of the kynurenine pathway: Tryptophan (Try), kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykykynurenine (HK), anthranilic acid (AA), xanthurenic acid (XA), 3-hydroxyanthranilic acid (HAA), quinolinic acid (QA) and picolinic acid (Pic).

Method: The population consisted of three groups: CFS patients (n = 49), FM patients (n = 58), and healthy controls (n = 54). All participants were females aged 18–60. Patients were recruited from a specialised university hospital clinic and controls were recruited by advertisement among the staff and students at the hospital and university.

Plasma levels of hsCRP were analysed at the hospital. The cytokines and chemokines IFN-γ, IL-1β, IL-1ra, xii IL-4, IL-6, IL-8, IL-10, IL-17, IP-10, MCP-1, TGF-β1, TGF-β2, TGF-β3, and TNF-α were analysed by multiplex. Kynurenine metabolites were analysed by LC-MS/MS.

Linear regression models of log-transformed data for hsCRP and the kynurenine metabolites were conducted for comparison of the three groups CFS, FM and controls. The Kruskal-Wallis test was used to analyse differences of cytokines between the three groups. Main findings were controlled for age, body mass index (BMI), and symptoms of anxiety and depression.

Results: hsCRP levels were significantly higher for both the CFS and FM groups compared to healthy controls when adjusting for age and BMI (p = .006). There was no difference between the two patient groups. Level of hsCRP was affected by BMI (p < .001) but not age.

MCP-1 was significantly increased in both patient groups compared to healthy controls (p < .001). IL-1β, Il-4, IL-6, TNF-α, TGF-β1, TGF-β2, TGF-β3 (all p < .001), IL-10 (p = .003) and IL17 (p = .002) all were significantly lower in the patient groups compared to healthy controls. IFN-γ was significantly lower in the FM group (p < .001). For IL-8, IP-10 and IL1ra there were no significant difference.

QA differed between CFS and FM patients (p = .036) and was related to higher levels of BMI (p = .002). The KA/QA ratio was lower for CFS patients compared to healthy controls (p = .016). The KA/HK ratio was lower for FM patients compared to healthy controls, and this lower ratio was associated with increased symptoms of pain (p = .002). The kynurenine aminotransferase II (KAT II) enzymatic activity given by XA/HK was lower for FM patients compared to healthy controls (p = .013). In addition, BMI was negatively associated with enhanced KAT II enzymatic activity (p = .039).

Symptoms of anxiety and depression were not associated with any of the immune markers studied.

Conclusion: In our material hsCRP and MCP-1 are increased in patients both with CFS and with FM, while several other cytokines are either similar or significantly lower in patients than controls. Our study also indicates associations between kynurenine metabolism and CFS and FM. Kynurenine also is associated with single symptoms such as fatigue and pain. Forthcoming studies indicating interactions and causative effects, or restoration of the inflammatory status, may place cytokines and kynurenine metabolites as a target for treatment as well as prevention of these conditions in the future.

Source: Groven, Nina. A Thesis on Immune Differences in Chronic Fatigue Syndrome, Fibromyalgia and Healthy Controls. PhD Thesis [Norwegian University of Science and Technology] https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3072207 (Full text available as PDF file)

Low avidity circulating SARS-CoV-2 reactive CD8+ T cells with proinflammatory TEMRA phenotype are associated with post-acute sequelae of COVID-19

Abstract:

The role of adaptive SARS-CoV-2 specific immunity in post-acute sequelae of COVID-19 (PASC) is not well explored, although a growing population of convalescent COVID-19 patients with manifestation of PASC is observed.

We analyzed the SARS-CoV-2-specific immune response, via pseudovirus neutralizing assay and multiparametric flow cytometry in 40 post-acute sequelae of COVID-19 patients with non-specific PASC manifestation and 15 COVID-19 convalescent healthy donors. Although frequencies of SARS-CoV-2-reactive CD4+ T cells were similar between the studied cohorts, a stronger SARS-CoV-2 reactive CD8+ T cell response, characterized by IFNγ production and predominant TEMRA phenotype but low functional TCR avidity was detected in PASC patients compared to controls. Of interest, high avidity SARS-CoV-2-reactive CD4+ and CD8+ T cells were comparable between the groups demonstrating sufficient cellular antiviral response in PASC. In line with the cellular immunity, neutralizing capacity in PASC patients was not inferior compared to controls.

In conclusion, our data suggest that PASC may be driven by an inflammatory response triggered by an expanded population of low avidity SARS-CoV-2 reactive pro-inflammatory CD8+ T cells. These pro-inflammatory T cells with TEMRA phenotype are known to be activated by a low or even without TCR stimulation and lead to a tissue damage. Further studies including animal models are required for a better understanding of underlying immunopathogensis.

Summary: A CD8+ driven persistent inflammatory response triggered by SARS-CoV-2 may be responsible for the observed sequelae in PASC patients.

Source: Paniskaki K, Konik MJ, Anft M, Heidecke H, Meister TL, Pfaender S, Krawczyk A, Zettler M, Jäger J, Gaeckler A, Dolff S, Westhoff TH, Rohn H, Stervbo U, Scheibenbogen C, Witzke O, Babel N. Low avidity circulating SARS-CoV-2 reactive CD8+ T cells with proinflammatory TEMRA phenotype are associated with post-acute sequelae of COVID-19. Front Microbiol. 2023 Jun 2;14:1196721. doi: 10.3389/fmicb.2023.1196721. PMID: 37333646; PMCID: PMC10272838. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272838/ (Full text)