Cognitive Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Aetiology and Potential Treatments

Abstract:

Systemic infection and inflammation impair mental function through a combination of altered attention and cognition. Here, we comprehensively review the relevant literature and report personal clinical observations to discuss the relationship between infection, peripheral inflammation, and cerebral and cognitive dysfunction in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).

Cognitive dysfunction in ME/CFS could result from low-grade persistent inflammation associated with raised pro-inflammatory cytokines. This may be caused by both infectious and non-infectious stimuli and lead to altered regional cerebral blood flow accompanied by disturbed neuronal function. Immune dysregulation that manifests as a subtle immunodeficiency or the autoimmunity targeting of one or more neuronal receptors may also be a contributing factor.

Efforts to reduce low-grade systemic inflammation and viral reactivation and to improve mitochondrial energy generation in ME/CFS have the potential to improve cognitive dysfunction in this highly disabling condition.

Source: Bansal AS, Seton KA, Brooks JCW, Carding SR. Cognitive Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Aetiology and Potential Treatments. Int J Mol Sci. 2025 Feb 22;26(5):1896. doi: 10.3390/ijms26051896. PMID: 40076522. https://www.mdpi.com/1422-0067/26/5/1896 (Full text)

 

Direct effects of prolonged TNF-α and IL-6 exposure on neural activity in human iPSC-derived neuron-astrocyte co-cultures

Abstract:

Cognitive impairment is one of the many symptoms reported by individuals suffering from long-COVID and other post-viral infection disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). A common factor among these conditions is a sustained immune response and increased levels of inflammatory cytokines. Tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) are two such cytokines that are elevated in patients diagnosed with long-COVID and ME/CFS.

In this study, we characterized the changes in neural functionality, secreted cytokine profiles, and gene expression in co-cultures of human iPSC-derived neurons and primary astrocytes in response to prolonged exposure to TNF-α and IL-6. We found that exposure to TNF-α produced both a concentration-independent and concentration-dependent response in neural activity.

Burst duration was significantly reduced within a few days of exposure regardless of concentration (1 pg/mL – 100 ng/mL) but returned to baseline after 7 days. Treatment with low concentrations of TNF-α (e.g., 1 and 25 pg/mL) did not lead to changes in the secreted cytokine profile or gene expression but still resulted in significant changes to electrophysiological features such as interspike interval and burst duration. Conversely, treatment with high concentrations of TNF-α (e.g., 10 and 100 ng/mL) led to reduced spiking activity, which may be correlated to changes in neural health, gene expression, and increases in inflammatory cytokine secretion (e.g., IL-1β, IL-4, and CXCL-10) that were observed at higher TNF-α concentrations.

Prolonged exposure to IL-6 led to changes in bursting features, with significant reduction in the number of spikes in bursts across a wide range of treatment concentrations (i.e., 1 pg/mL-10 ng/mL). In combination, the addition of IL-6 appears to counteract the changes to neural function induced by low concentrations of TNF-α, while at high concentrations of TNF-α the addition of IL-6 had little to no effect. Conversely, the changes to electrophysiological features induced by IL-6 were lost when the cultures were co-stimulated with TNF-α regardless of the concentration, suggesting that TNF-α may play a more pronounced role in altering neural function.

These results indicate that increased concentrations of key inflammatory cytokines associated with long-COVID can directly impact neural function and may be a component of the cognitive impairment associated with long-COVID and other post-viral infection disorders.

Source: Goshi N, Lam D, Bogguri C, George VK, Sebastian A, Cadena J, Leon NF, Hum NR, Weilhammer DR, Fischer NO, Enright HA. Direct effects of prolonged TNF-α and IL-6 exposure on neural activity in human iPSC-derived neuron-astrocyte co-cultures. Front Cell Neurosci. 2025 Feb 12;19:1512591. doi: 10.3389/fncel.2025.1512591. PMID: 40012566; PMCID: PMC11860967. https://pmc.ncbi.nlm.nih.gov/articles/PMC11860967/ (Full text)

Immunological and Antigenic Signatures Associated with Chronic Illnesses after COVID-19 Vaccination

Summary:

COVID-19 vaccines have prevented millions of COVID-19 deaths. Yet, a small fraction of the population reports a chronic debilitating condition after COVID-19 vaccination, often referred to as post-vaccination syndrome (PVS). To explore potential pathobiological features associated with PVS, we conducted a decentralized, cross-sectional study involving 42 PVS participants and 22 healthy controls enrolled in the Yale LISTEN study.

Compared with controls, PVS participants exhibited differences in immune profiles, including reduced circulating memory and effector CD4 T cells (type 1 and type 2) and an increase in TNFα+ CD8 T cells. PVS participants also had lower anti-spike antibody titers, primarily due to fewer vaccine doses. Serological evidence of recent Epstein-Barr virus (EBV) reactivation was observed more frequently in PVS participants. Further, individuals with PVS exhibited elevated levels of circulating spike protein compared to healthy controls.

These findings reveal potential immune differences in individuals with PVS that merit further investigation to better understand this condition and inform future research into diagnostic and therapeutic approaches.

Source: Bornali Bhattacharjee, Peiwen Lu, Valter Silva Monteiro, Alexandra Tabachnikova, Kexin Wang, William B. Hooper, Victoria Bastos, Kerrie Greene, Mitsuaki Sawano, Christian Guirgis, Tiffany J. Tzeng, Frederick Warner, Pavlina Baevova, Kathy Kamath, Jack Reifert, Danice Hertz, Brianne Dressen, Laura Tabacof, Jamie Wood, Lily Cooke, Mackenzie Doerstling, Shadan Nolasco, Amer Ahmed, Amy Proal, David Putrino, Leying Guan, Harlan M. Krumholz, Akiko Iwasaki. Immunological and Antigenic Signatures Associated with Chronic Illnesses after COVID-19 Vaccination

Abnormal T-Cell Activation And Cytotoxic T-Cell Frequency Discriminates Symptom Severity In Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating but poorly-understood disease. ME/CFS symptoms can range from mild to severe, and include immune system effects alongside incapacitating fatigue and post-exertional disease exacerbation. In this study, we examined immunological profiles of people living with ME/CFS by flow cytometry, focusing on cytotoxic cells, to determine whether people with mild/moderate (n= 43) or severe ME/CFS (n=53) expressed different immunological markers.

We found that people with mild/moderate ME/CFS had increased expression of cytotoxic effector molecules alongside enhanced proportions of early-immunosenescence cells, determined by the CD28  CD57  phenotype, indicative of persistent viral infection. In contrast, people with severe ME/CFS had higher proportions of activated circulating lymphocytes, determined by CD69 + and CD38 + expression, and expressed more pro-inflammatory cytokines, including IFNγ, TNF and IL-17, following stimulation in vitro , indicative of prolonged non-specific inflammation.

These changes were consistent across different cell types including CD8 + T cells, mucosal associated invariant T cells and Natural Killer cells, indicating generalised altered cytotoxic responses across the innate and adaptive immune system. These immunological differences likely reflect different disease pathogenesis mechanisms occurring in the two clinical groups, opening up opportunities for the development of prognostic markers and stratified treatments.

Source: Lee JS, Lacerda E, Kingdon C, Susannini G, Dockrell HM, Nacul L, Cliff JM. Abnormal T-Cell Activation And Cytotoxic T-Cell Frequency Discriminates Symptom Severity In Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. medRxiv [Preprint]. 2025 Jan 6:2025.01.02.24319359. doi: 10.1101/2025.01.02.24319359. PMID: 39830245; PMCID: PMC11741448. https://pubmed.ncbi.nlm.nih.gov/39830245/

Effect of Immunoadsorption on clinical presentation and immune alterations in COVID-19-induced and/or aggravated ME/CFS

Abstract:

Autoreactive antibodies (AAB) are currently being investigated as causative or aggravating factors during post-COVID. In this study we analyze the effect of immunoadsorption therapy on symptom improvement and the relationship with immunological parameters in post-COVID patients exhibiting symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) induced or aggravated by an SARS-CoV-2 infection. This observational study includes 12 post-COVID patients exhibiting a predominance of ME/CFS symptoms alongside increased concentrations of autonomic nervous system receptors (ANSR) autoantibodies and neurological impairments.

We found that following immunoadsorption therapy, the ANSR autoantibodies were nearly eliminated from the patients’ blood. The removal of IgG antibodies was accompanied by a decrease of pro-inflammatory cytokines including IL4, IL2, IL1β, TNF and IL17A serum levels, and a significant reduction of soluble spike protein. Notably, a strong positive correlation between pro-inflammatory cytokines and ASNR-AABs β1, β2, M3, and M4 was observed in spike protein-positive patients, whereas no such correlation was evident in spike protein-negative patients.

30 days post-immunoadsorption therapy, patients exhibited notable improvement in neuropsychological function and a modest but statistically significant amelioration of hand grip strength was observed. However, neither self-reported symptoms nor scores on ME/CFS questionnaires showed a significant improvement and a rebound of the removed proteins occurring within a month.

Source: Anft M, Wiemers L, Rosiewicz KS, Doevelaar A, Skrzypczyk S, Kurek J, Kaliszczyk S, Seidel M, Stervbo U, Seibert FS, Westhoff TH, Babel N. Effect of Immunoadsorption on clinical presentation and immune alterations in COVID-19-induced and/or aggravated ME/CFS. Mol Ther. 2025 Jan 9:S1525-0016(25)00011-5. doi: 10.1016/j.ymthe.2025.01.007. Epub ahead of print. PMID: 39797400. https://www.cell.com/molecular-therapy-family/molecular-therapy/pdf/S1525-0016(25)00011-5.pdf (Full text) https://pubmed.ncbi.nlm.nih.gov/39797400/ (Abstract)

Impact of age and sex on neuroinflammation following SARS-CoV-2 infection in a murine model

Abstract:

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, is known to infect people of all ages and both sexes. Senior populations have the greatest risk of severe COVID-19, and sexual dimorphism in clinical outcomes has been reported. Neurological symptoms are widely observed in COVID-19 patients, with many survivors exhibiting persistent neurological and cognitive impairment. The present study aims to investigate the impact of age and sex on the neuroinflammatory response to SARS-CoV-2 infection using a mouse model. Wild-type C57BL/6J mice were intranasally inoculated with SARS-CoV-2 lineage B.1.351, a variant known to infect mice.

Older male mice exhibited a significantly greater weight loss and higher viral loads in the lung at 3 days post infection. Notably, no viral RNA was detected in the brains of infected mice. Nevertheless, expression of IL-6, TNF-α, and CCL-2 in the lung and brain increased with viral infection. RNA-seq transcriptomic analysis of brains showed that SARS-CoV-2 infection caused significant changes in gene expression profiles, implicating innate immunity, defense response to virus, and cerebrovascular and neuronal functions.

These findings demonstrate that SARS-CoV-2 infection triggers a neuroinflammatory response, despite the lack of detectable virus in the brain. Aberrant activation of innate immune response, disruption of blood-brain barrier and endothelial cell integrity, and suppression of neuronal activity and axonogenesis underlie the impact of SARS-CoV-2 infection on the brain. Understanding the role of these affected pathways in SARS-CoV-2 pathogenesis helps identify appropriate points of therapeutic interventions to alleviate neurological dysfunction observed during COVID-19.

Source: Krishna VD, Chang A, Korthas H, Var SR, Low WC, Li L, Cheeran MC. Impact of age and sex on neuroinflammation following SARS-CoV-2 infection in a murine model. bioRxiv [Preprint]. 2023 Aug 14:2023.08.11.552998. doi: 10.1101/2023.08.11.552998. Update in: Front Microbiol. 2024 Jul 15;15:1404312. doi: 10.3389/fmicb.2024.1404312. PMID: 37645925; PMCID: PMC10462071. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462071/ (Full text)

Impact of inflammatory response in the acute phase of COVID-19 on predicting objective and subjective post-COVID fatigue

Abstract:

The biological predictors of objective and subjective fatigue in individuals with post-COVID syndrome remains unclear. This study aims to ascertain the predictive significance of the immune response measured during the acute phase of SARS-CoV-2 infection on various dimensions of fatigue 6–9 months post-infection.

We examined the association between immune markers obtained from the serum of 54 patients (mean age: 58.69 ± 10.90; female: 31%) and objective and subjective chronic fatigue using general linear mixed models. Level of IL-1RA, IFNγ and TNFα in plasma and the percentage of monocytes measured in the acute phase of COVID-19 predicted physical and total fatigue.

Moreover, the higher the concentration of TNFα (r=-0.40 ; p = .019) in the acute phase, the greater the lack of awareness of cognitive fatigue 6–9 months post-infection. These findings shed light on the relationship between acute inflammatory response and the persistence of both objective and subjective fatigue.

Source: Julie Péron, Anthony Nuber-Champier, Gautier Breville et al. Impact of inflammatory response in the acute phase of COVID-19 on predicting objective and subjective post-COVID fatigue, 28 May 2024, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-4374986/v1] https://www.researchsquare.com/article/rs-4374986/v1 (Full text)

Diverse immunological dysregulation, chronic inflammation, and impaired erythropoiesis in long COVID patients with chronic fatigue syndrome

Abstract:

A substantial number of patients recovering from acute SARS-CoV-2 infection present serious lingering symptoms, often referred to as long COVID (LC). However, a subset of these patients exhibits the most debilitating symptoms characterized by ongoing myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS).

We specifically identified and studied ME/CFS patients from two independent LC cohorts, at least 12 months post the onset of acute disease, and compared them to the recovered group (R). ME/CFS patients had relatively increased neutrophils and monocytes but reduced lymphocytes. Selective T cell exhaustion with reduced naïve but increased terminal effector T cells was observed in these patients. LC was associated with elevated levels of plasma pro-inflammatory cytokines, chemokines, Galectin-9 (Gal-9), and artemin (ARTN). A defined threshold of Gal-9 and ARTN concentrations had a strong association with LC.

The expansion of immunosuppressive CD71+ erythroid cells (CECs) was noted. These cells may modulate the immune response and contribute to increased ARTN concentration, which correlated with pain and cognitive impairment. Serology revealed an elevation in a variety of autoantibodies in LC. Intriguingly, we found that the frequency of 2B4+CD160+ and TIM3+CD160+ CD8+ T cells completely separated LC patients from the R group.

Our further analyses using a multiple regression model revealed that the elevated frequency/levels of CD4 terminal effector, ARTN, CEC, Gal-9, CD8 terminal effector, and MCP1 but lower frequency/levels of TGF-β and MAIT cells can distinguish LC from the R group. Our findings provide a new paradigm in the pathogenesis of ME/CFS to identify strategies for its prevention and treatment.

Source: Saito S, Shahbaz S, Osman M, Redmond D, Bozorgmehr N, Rosychuk RJ, Lam G, Sligl W, Cohen Tervaert JW, Elahi S. Diverse immunological dysregulation, chronic inflammation, and impaired erythropoiesis in long COVID patients with chronic fatigue syndrome. J Autoimmun. 2024 May 25;147:103267. doi: 10.1016/j.jaut.2024.103267. Epub ahead of print. PMID: 38797051. https://www.sciencedirect.com/science/article/pii/S089684112400101X (Full text)

Recent Research Trends in Neuroinflammatory and Neurodegenerative Disorders

Abstract:

Neuroinflammatory and neurodegenerative disorders including Alzheimer’s disease (AD), Parkinson’s disease (PD), traumatic brain injury (TBI) and Amyotrophic lateral sclerosis (ALS) are chronic major health disorders. The exact mechanism of the neuroimmune dysfunctions of these disease pathogeneses is currently not clearly understood.

These disorders show dysregulated neuroimmune and inflammatory responses, including activation of neurons, glial cells, and neurovascular unit damage associated with excessive release of proinflammatory cytokines, chemokines, neurotoxic mediators, and infiltration of peripheral immune cells into the brain, as well as entry of inflammatory mediators through damaged neurovascular endothelial cells, blood-brain barrier and tight junction proteins. Activation of glial cells and immune cells leads to the release of many inflammatory and neurotoxic molecules that cause neuroinflammation and neurodegeneration.

Gulf War Illness (GWI) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are chronic disorders that are also associated with neuroimmune dysfunctions. Currently, there are no effective disease-modifying therapeutic options available for these diseases. Human induced pluripotent stem cell (iPSC)-derived neurons, astrocytes, microglia, endothelial cells and pericytes are currently used for many disease models for drug discovery. This review highlights certain recent trends in neuroinflammatory responses and iPSC-derived brain cell applications in neuroinflammatory disorders.

Source: Cohen J, Mathew A, Dourvetakis KD, Sanchez-Guerrero E, Pangeni RP, Gurusamy N, Aenlle KK, Ravindran G, Twahir A, Isler D, Sosa-Garcia SR, Llizo A, Bested AC, Theoharides TC, Klimas NG, Kempuraj D. Recent Research Trends in Neuroinflammatory and Neurodegenerative Disorders. Cells. 2024 Mar 14;13(6):511. doi: 10.3390/cells13060511. PMID: 38534355; PMCID: PMC10969521. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969521/ (Full text)

The molecular fingerprint of neuroinflammation in COVID-19: A comprehensive discussion on molecular mechanisms of neuroinflammation due to SARS-COV2 antigens

Abstract:

Background and objective: Severe acute respiratory syndrome coronavirus 2 attacks the neural system directly and indirectly via various systems, such as the nasal cavity, olfactory system, and facial nerves. Considering the high energy requirement, lack of antioxidant defenses, and high amounts of metal ions in the brain, oxidative damage is very harmful to the brain. Various neuropathic pain conditions, neurological disorders, and neuropsychiatric complications were reported in Coronavirus disease 2019, prolonged Coronavirus disease 2019, and after Coronavirus disease 2019 immunization. This manuscript offers a distinctive outlook on the interconnectedness between neurology and neuropsychiatry through its meticulous analysis of complications.

Discussion: After recovering from Coronavirus disease 2019, approximately half of the patients reported developing Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Long Coronavirus disease 2019 imaging reports illustrated the hypometabolism in various parts of the brain, such as olfactory bulbs, limbic/paralimbic domains, the brainstem, and the cerebellum. Ninety imaging and neuropathological studies of Coronavirus disease 2019 have shown evidence of white matter, brainstem, frontotemporal, and oculofrontal lesions. Emotional functions, such as pleasant, long/short-term memory, movement, cognition and cognition in decision-making are controlled by these regions. The neuroinflammation and the mechanisms of defense are well presented in the discussion. The role of microglia activation, Inducible NO synthase, Cyclooxygenases ½, Reactive oxygen species, neurotoxic toxins and pro-inflammatory cytokines, such as Interleukin-1 beta, Interleukin-6 and Tumor Necrosis Factor-alpha are highlighted in neuronal dysfunction and death. Nuclear factor kappa-light-chain-enhancer of activated B cells, Mitogen-activated protein kinase, Activator Protein 1, and Interferon regulatory factors are the main pathways involved in microglia activation in Coronavirus disease 2019 neuroinflammation.

Conclusion: The neurological aspect of Coronavirus disease 2019 should be highlighted. Neurological, psychological, and behavioral aspects of Coronavirus disease 2019, prolonged Coronavirus disease 2019, and Coronavirus disease 2019 vaccines can be the upcoming issues. We need a global awareness where this aspect of the disease should be more considered in health research.

Source: Zayeri ZD, Torabizadeh M, Kargar M, Kazemi H. The molecular fingerprint of neuroinflammation in COVID-19: A comprehensive discussion on molecular mechanisms of neuroinflammation due to SARS-COV2 antigens. Behav Brain Res. 2024 Jan 20;462:114868. doi: 10.1016/j.bbr.2024.114868. Epub ahead of print. PMID: 38246395. https://www.sciencedirect.com/science/article/abs/pii/S016643282400024X