Data-independent LC-MS/MS analysis of ME/CFS plasma reveals a dysregulated coagulation system, endothelial dysfunction, downregulation of complement machinery

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic condition that is characterized by unresolved fatigue, post-exertion symptom exacerbation (PESE), cognitive dysfunction, orthostatic intolerance, and other symptoms. ME/CFS lacks established clinical biomarkers and requires further elucidation of disease mechanisms.

A growing number of studies demonstrate signs of hematological and cardiovascular pathology in ME/CFS cohorts, including hyperactivated platelets, endothelial dysfunction, vascular dysregulation, and anomalous clotting processes. To build on these findings, and to identify potential biomarkers that can be related to pathophysiology, we measured differences in protein expression in platelet-poor plasma (PPP) samples from 15 ME/CFS study participants and 10 controls not previously infected with SARS-CoV-2, using DIA LC-MS/MS.

We identified 24 proteins that are significantly increased in the ME/CFS group compared to the controls, and 21 proteins that are significantly downregulated. Proteins related to clotting processes – thrombospondin-1 (important in platelet activation), platelet factor 4, and protein S – were differentially expressed in the ME/CFS group, suggestive of a dysregulated coagulation system and abnormal endothelial function. Complement machinery was also significantly downregulated, including C9 which forms part of the membrane attack complex. Additionally, we identified a significant upregulation of lactotransferrin, protein S100-A9, and an immunoglobulin variant.

The findings from this experiment further implicate the coagulation and immune system in ME/CFS, and bring to attention the pathology of or imposed on the endothelium. This study highlights potential systems and proteins that require further research with regards to their contribution to the pathogenesis of ME/CFS, symptom manifestation, and biomarker potential, and also gives insight into the hematological and cardiovascular risk for ME/CFS individuals affected by diabetes mellitus.

Source: Nunes, M., Vlok, M., Proal, A. et al. Data-independent LC-MS/MS analysis of ME/CFS plasma reveals a dysregulated coagulation system, endothelial dysfunction, downregulation of complement machinery. Cardiovasc Diabetol 23, 254 (2024). https://doi.org/10.1186/s12933-024-02315-x https://cardiab.biomedcentral.com/articles/10.1186/s12933-024-02315-x (Full text)

Persistent immune and clotting dysfunction detected in saliva and blood plasma after COVID-19

Abstract:

A growing number of studies indicate that coronavirus disease 2019 (COVID-19) is associated with inflammatory sequelae, but molecular signatures governing the normal versus pathologic convalescence process have not been well-delineated. Here, we characterized global immune and proteome responses in matched plasma and saliva samples obtained from COVID-19 patients collected between 20 and 90 days after initial clinical symptoms resolved.

Convalescent subjects showed robust total IgA and IgG responses and positive antibody correlations in saliva and plasma samples. Shotgun proteomics revealed persistent inflammatory patterns in convalescent samples including dysfunction of salivary innate immune cells, such as neutrophil markers (e.g., myeloperoxidase), and clotting factors in plasma (e.g., fibrinogen), with positive correlations to acute COVID-19 disease severity. Saliva samples were characterized by higher concentrations of IgA, and proteomics showed altered myeloid-derived pathways that correlated positively with SARS-CoV-2 IgA levels.

Beyond plasma, our study positions saliva as a viable fluid to monitor normal and aberrant immune responses including vascular, inflammatory, and coagulation-related sequelae.

Source: Jang H, Choudhury S, Yu Y, Sievers BL, Gelbart T, Singh H, Rawlings SA, Proal A, Tan GS, Qian Y, Smith D, Freire M. Persistent immune and clotting dysfunction detected in saliva and blood plasma after COVID-19. Heliyon. 2023 Jul 4;9(7):e17958. doi: 10.1016/j.heliyon.2023.e17958. PMID: 37483779; PMCID: PMC10362241. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362241/ (Full text)

The occurrence of hyperactivated platelets and fibrinaloid microclots in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

We have previously demonstrated that platelet poor plasma (PPP) obtained from patients with LongCovid/Post-Acute Sequelae of COVID-19 (PASC) is characterized by a hypercoagulable state reflected in hyperactivated platelets and the presence of considerable numbers of fibrin(ogen) amyloid microclots or fibrinaloid microclots. Due to substantial overlap in symptoms and aetiology between PASC and ME/CFS, we investigated whether coagulopathies, platelet hyperactivation and/or fibrin amyloid formation differed between individuals exhibiting ME/CFS and gender- and age-matched healthy controls.

ME/CFS patients were statistically far more hypercoagulable as judged by thromboelastography of both whole blood and platelet-poor plasma. The area of plasma images containing fibrinaloid microclots was commonly more than 10-fold greater in untreated platelet-poor plasma from individuals with ME/CFS than in that of healthy controls. A similar difference was found when the plasma samples were treated with thrombin. Using fluorescently labelled PAC-1, which recognizes glycoprotein IIb/IIIa, and CD62P, which binds P-selectin, we observed massive hyperactivation and spreading of platelets in samples from individuals with ME/CFS. Using a quantitative scoring system, this was found to have a score of 2.72 ± 1.24 vs 1.00 (activation with pseudopodia formation) for healthy controls.

We conclude that ME/CFS is accompanied by substantial and measurable changes in coagulability, platelet hyperactivation, and fibrinaloid microclot formation. However, fibrinaloid microclot load was not as prevalent as was previously noted in PASC. Fibrinaloid microclots, in particular can provide a ready explanation, via (temporary) blockage of microcapillaries and hence ischaemia, for many of the symptoms, such as fatigue, seen in patients with ME/CFS. The discovery of these biomarkers pointing to significant and systemic endothelial inflammation, represents an important development in ME/CFS research. It also points at novel treatment strategies using known drugs and/or nutraceuticals that target systemic vascular pathology and endothelial inflammation.

Source: Massimo Nunes, Arneaux Kruger, Amy Proal et al. The occurrence of hyperactivated platelets and fibrinaloid microclots in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), 08 June 2022, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-1727226/v1 (Full text)