A review of intravenous immunoglobulin in the treatment of neuroimmune conditions, acute COVID-19 infection, and post-acute sequelae of COVID-19 Syndrome

Abstract:

Intravenous immunoglobulin (IVIG) is an immunomodulatory therapy that has been studied in several neuroimmune conditions, such as Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, and multiple sclerosis. It has also been proposed as a potential treatment option for acute COVID-19 infection and post-acute sequelae of SARS-CoV-2 infection (PASC). IVIG is thought to function by providing the recipient with a pool of antibodies, which can, in turn, modulate immune responses through multiple mechanisms including neutralization of cytokines and autoantibodies, saturation of neonatal fragment crystallizable receptors, inhibition of complement activation, and regulation of T and B cell mediated inflammation.

In acute COVID-19, studies have shown that early administration of IVIG and plasmapheresis in severe cases can reduce the need for mechanical ventilation, shorten ICU and hospital stays, and lower mortality. Similarly, in PASC, while research is still in early stages, IVIG has been shown to alleviate persistent symptoms in small patient cohorts.

Furthermore, IVIG has shown benefits in another condition which has symptomatic overlap with PASC, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), though studies have yielded mixed results. It is important to note that IVIG can be associated with several potential adverse effects, such as anaphylaxis, headaches, thrombosis, liver enzyme elevations and renal complications. In addition, the high cost of IVIG can be a deterrent for payers and patients.

This review provides a comprehensive update on the use of IVIG in multiple neuroimmune conditions, ME/CFS, acute COVID-19, and PASC, as well as covers its history, production, pricing, and mechanisms of action. We also identify key areas of future research, including the need to optimize the use of Ig product dosing, timing, and patient selection across conditions, particularly in the context of COVID-19 and PASC.

Source: Morse BA, Motovilov K, Michael Brode W, Michael Tee F, Melamed E. A review of intravenous immunoglobulin in the treatment of neuroimmune conditions, acute COVID-19 infection, and post-acute sequelae of COVID-19 Syndrome. Brain Behav Immun. 2024 Oct 8:S0889-1591(24)00648-2. doi: 10.1016/j.bbi.2024.10.006. Epub ahead of print. PMID: 39389388. https://www.sciencedirect.com/science/article/abs/pii/S0889159124006482

Immune Adsorption for the Treatment of Fatigue-Dominant Long-/Post-COVID Syndrome

Introduction:

Following an infection with SARS-CoV-2, a relevant proportion of patients suffer from fatigue-dominant long-/post-COVID syndrome. In 57% of patients with long-/post-COVID syndrome, who were treated in a university hospital, increased levels of autoantibodies (AABs) to G-protein-coupled neurotransmitter receptors (including ß-adrenergic and muscarinic) were detected ().

Reduction of ß-adrenergic AABs by immunoadsorption therapy was associated with clinical improvement in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) (). Increasingly, reports of individual cases of successful treatment of long/post-COVID syndrome with the help of apheresis techniques have been widely disseminated via social media. By contrast, cases or studies with negative outcomes are much less likely to receive proper attention. Given the overall lack of data to date, medical societies are calling for a broader scientific basis, to which we would like to contribute with this case series.

Source: Ruhe J, Giszas B, Schlosser M, Reuken PA, Wolf G, Stallmach A. Immune Adsorption for the Treatment of Fatigue-Dominant Long-/Post-COVID Syndrome: A Series of Cases With Standardized Individual Experimental Therapy. Dtsch Arztebl Int. 2023 Jul;120(29-30):499–500. doi: 10.3238/arztebl.m2023.0073. Epub 2023 Jul 24. PMCID: PMC10511006. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511006/ (Full text)

Plasmapheresis to remove amyloid fibrin(ogen) particles for treating the post‐COVID‐19 condition

Abstract:

Background: The post-COVID-19 condition (PCC) consists of a wide array of symptoms including fatigue and impaired daily living. People seek a wide variety of approaches to help them recover. A new belief, arising from a few laboratory studies, is that ‘microclots’ cause the symptoms of PCC. This belief has been extended outside these studies, suggesting that to recover people need plasmapheresis (an expensive process where blood is filtered outside the body). We appraised the laboratory studies, and it was clear that the term ‘microclots’ is incorrect to describe the phenomenon being described. The particles are amyloid and include fibrin(ogen); amyloid is not a part of a thrombus which is a mix of fibrin mesh and platelets. Initial acute COVID-19 infection is associated with clotting abnormalities; this review concerns amyloid fibrin(ogen) particles in PCC only. We have reported here our appraisal of laboratory studies investigating the presence of amyloid fibrin(ogen) particles in PCC, and of evidence that plasmapheresis may be an effective therapy to remove amyloid fibrin(ogen) particles for treating PCC.

Objectives: Laboratory studies review To summarize and appraise the research reports on amyloid fibrin(ogen) particles related to PCC. Randomized controlled trials review To assess the evidence of the safety and efficacy of plasmapheresis to remove amyloid fibrin(ogen) particles in individuals with PCC from randomized controlled trials.

Search methods: Laboratory studies review We searched for all relevant laboratory studies up to 27 October 2022 using a comprehensive search strategy which included the search terms ‘COVID’, ‘amyloid’, ‘fibrin’, ‘fibrinogen’. Randomized controlled trials review We searched the following databases on 21 October 2022: Cochrane COVID-19 Study Register; MEDLINE (Ovid); Embase (Ovid); and BIOSIS Previews (Web of Science). We also searched the WHO International Clinical Trials Registry Platform and ClinicalTrials.gov for trials in progress.

Selection criteria: Laboratory studies review Laboratory studies that investigate the presence of amyloid fibrin(ogen) particles in plasma samples from patients with PCC were eligible. This included studies with or without controls. Randomized controlled trials review Studies were eligible if they were of randomized controlled design and investigated the effectiveness or safety of plasmapheresis for removing amyloid fibrin(ogen) particles for treating PCC.

Data collection and analysis: Two review authors applied study inclusion criteria to identify eligible studies and extracted data. Laboratory studies review We assessed the risk of bias of included studies using pre-developed methods for laboratory studies. We planned to perform synthesis without meta-analysis (SWiM) as described in our protocol. Randomized controlled trials review We planned that if we identified any eligible studies, we would assess risk of bias and report results with 95% confidence intervals. The primary outcome was recovery, measured using the Post-COVID-19 Functional Status Scale (absence of symptoms related to the illness, ability to do usual daily activities, and a return to a previous state of health and mind).

Main results: Laboratory studies review We identified five laboratory studies. Amyloid fibrin(ogen) particles were identified in participants across all studies, including those with PCC, healthy individuals, and those with diabetes. The results of three studies were based on visual images of amyloid fibrin(ogen) particles, which did not quantify the amount or size of the particles identified. Formal risk of bias assessment showed concerns in how the studies were conducted and reported. This means the results were insufficient to support the belief that amyloid fibrin(ogen) particles are associated with PCC, or to determine whether there is a difference in the amount or size of amyloid fibrin(ogen) particles in the plasma of people with PCC compared to healthy controls. Randomized controlled trials review We identified no trials meeting our inclusion criteria.

Authors’ conclusions: In the absence of reliable research showing that amyloid fibrin(ogen) particles contribute to the pathophysiology of PCC, there is no rationale for plasmapheresis to remove amyloid fibrin(ogen) particles in PCC. Plasmapheresis for this indication should not be used outside the context of a well-conducted randomized controlled trial.

Source: Fox T, Hunt BJ, Ariens RA, Towers GJ, Lever R, Garner P, Kuehn R. Plasmapheresis to remove amyloid fibrin(ogen) particles for treating the post-COVID-19 condition. Cochrane Database Syst Rev. 2023 Jul 26;7(7):CD015775. doi: 10.1002/14651858.CD015775. PMID: 37491597; PMCID: PMC10368521. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368521/ (Full text)

COVID-19 and Therapeutic Apheresis

Abstract:

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, is an unprecedented challenge for the global community. The pathogenesis of COVID-19, its complications and long term sequelae (so called Long/Post-COVID) include, in addition to the direct virus-induced tissues injury, multiple secondary processes, such as autoimmune response, impairment of microcirculation, and hyperinflammation. Similar pathological processes, but in the settings of neurological, cardiovascular, rheumatological, nephrological, and dermatological diseases can be successfully treated by powerful methods of Therapeutic Apheresis (TA).

We describe here the rationale and the initial attempts of TA treatment in severe cases of acute COVID-19. We next review the evidence for the role of autoimmunity, microcirculatory changes and inflammation in pathogenesis of Long/Post COVID and the rationale for targeting those pathogenic processes by different methods of TA. Finally, we discuss the impact of COVID-19 pandemic on patients, who undergo regular TA treatments due to their underlying chronic conditions, with the specific focus on the patients with inherited lipid diseases being treated at the Dresden University Apheresis Center.

Source: Tselmin S, Julius U, Jarzebska N, Rodionov R. COVID-19 and Therapeutic Apheresis. Horm Metab Res. 2022 Aug;54(8):571-577. doi: 10.1055/a-1864-9482. Epub 2022 Aug 9. PMID: 35944525.  https://pubmed.ncbi.nlm.nih.gov/35944525/

Case Report: Therapeutic and immunomodulatory effects of plasmapheresis in long-haul COVID

Abstract:

Many patients with COVID-19 experience a range of debilitating symptoms months after being infected, a syndrome termed long-haul COVID. A 68-year-old male presented with lung opacity, fatigue, physical and cognitive weaknesses, loss of smell and lymphocytopenia. After rounds of therapeutic plasma exchange (TPE), the patient returned to normal activities and work. Mechanistically in the patient’s peripheral blood mononuclear cells (PBMCs), markers of inflammatory macrophages diminished and markers of lymphocytes, including natural killer (NK) cells and cytotoxic CD8 T-cells, increased. Circulating inflammatory proteins diminished, while positive regulators of tissue repair increased. This case study suggests that TPE has the capacity to treat long-haul COVID.

Source: Kiprov DD, Herskowitz A, Kim D, Lieb M, Liu C, Watanabe E, Hoffman JC, Rohe R, Conboy MJ, Conboy IM. Case Report: Therapeutic and immunomodulatory effects of plasmapheresis in long-haul COVID. F1000Res. 2021 Nov 24;10:1189. doi: 10.12688/f1000research.74534.2. PMID: 35464182; PMCID: PMC9021669. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9021669/ (Full text)