Cytokines in the cerebrospinal fluids of patients with chronic fatigue syndrome/myalgic encephalomyelitis

Abstract:

OBJECTIVES: Previous research has provided evidence for dysregulation in peripheral cytokines in patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). To date only one study has examined cytokines in cerebrospinal fluid (CSF) samples of CFS/ME patients. The purpose of this pilot study was to examine the role of cytokines in CSF of CFS/ME patients.

METHODS: CSF was collected from 18 CFS/ME patients and 5 healthy controls. The CSF samples were examined for the expression of 27 cytokines (interleukin- (IL-) 1β, IL-1ra, IL-2, IL-4, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-17, basic FGF, eotaxin, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1 (MCAF), MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α, and VEGF) using the Bio-Plex Human Cytokine 27-plex Assay.

RESULTS: Of the 27 cytokines examined, only IL-10 was significantly reduced in the CFS/ME patients in comparison to the controls.

CONCLUSIONS: This preliminary investigation suggests that perturbations in inflammatory cytokines in the CSF of CFS/ME patients may contribute to the neurological discrepancies observed in CFS/ME.

 

Source: Peterson D, Brenu EW, Gottschalk G, Ramos S, Nguyen T, Staines D, Marshall-Gradisnik S. Cytokines in the cerebrospinal fluids of patients with chronic fatigue syndrome/myalgic encephalomyelitis. Mediators Inflamm. 2015;2015:929720. doi: 10.1155/2015/929720. Epub 2015 Mar 5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365360/ (Full article)

 

Cytokine network analysis of cerebrospinal fluid in myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome is an unexplained debilitating disorder that is frequently associated with cognitive and motor dysfunction. We analyzed cerebrospinal fluid from 32 cases, 40 subjects with multiple sclerosis and 19 normal subjects frequency-matched for age and sex using a 51-plex cytokine assay.

Group-specific differences were found for the majority of analytes with an increase in cases of CCL11 (eotaxin), a chemokine involved in eosinophil recruitment. Network analysis revealed an inverse relationship between interleukin 1 receptor antagonist and colony-stimulating factor 1, colony-stimulating factor 2 and interleukin 17F, without effects on interleukin 1α or interleukin 1β, suggesting a disturbance in interleukin 1 signaling.

Our results indicate a markedly disturbed immune signature in the cerebrospinal fluid of cases that is consistent with immune activation in the central nervous system, and a shift toward an allergic or T helper type-2 pattern associated with autoimmunity.

 

Source: Hornig M, Gottschalk G, Peterson DL, Knox KK, Schultz AF, Eddy ML, Che X, Lipkin WI. Cytokine network analysis of cerebrospinal fluid in myalgic encephalomyelitis/chronic fatigue syndrome. Mol Psychiatry. 2016 Feb;21(2):261-9. doi: 10.1038/mp.2015.29. Epub 2015 Mar 31. https://www.ncbi.nlm.nih.gov/pubmed/25824300

 

A multicenter blinded analysis indicates no association between chronic fatigue syndrome/myalgic encephalomyelitis and either xenotropic murine leukemia virus-related virus or polytropic murine leukemia virus

Abstract:

The disabling disorder known as chronic fatigue syndrome or myalgic encephalomyelitis (CFS/ME) has been linked in two independent studies to infection with xenotropic murine leukemia virus-related virus (XMRV) and polytropic murine leukemia virus (pMLV). Although the associations were not confirmed in subsequent studies by other investigators, patients continue to question the consensus of the scientific community in rejecting the validity of the association. Here we report blinded analysis of peripheral blood from a rigorously characterized, geographically diverse population of 147 patients with CFS/ME and 146 healthy subjects by the investigators describing the original association. This analysis reveals no evidence of either XMRV or pMLV infection. I

MPORTANCE Chronic fatigue syndrome/myalgic encephalomyelitis has an estimated prevalence of 42/10,000 in the United States, with annual direct medical costs of $7 billion. Here, the original investigators who found XMRV and pMLV (polytropic murine leukemia virus) in blood of subjects with this disorder report that this association is not confirmed in a blinded analysis of samples from rigorously characterized subjects. The increasing frequency with which molecular methods are used for pathogen discovery poses new challenges to public health and support of science. It is imperative that strategies be developed to rapidly and coherently address discoveries so that they can be carried forward for translation to clinical medicine or abandoned to focus resource investment more productively. Our study provides a paradigm for pathogen discovery that may be helpful to others working in this field.

 

Source: Alter HJ, Mikovits JA, Switzer WM, Ruscetti FW, Lo SC, Klimas N, Komaroff AL, Montoya JG, Bateman L, Levine S, Peterson D, Levin B, Hanson MR, Genfi A, Bhat M, Zheng H, Wang R, Li B, Hung GC, Lee LL, Sameroff S, Heneine W, Coffin J, Hornig M, Lipkin WI. A multicenter blinded analysis indicates no association between chronic fatigue syndrome/myalgic encephalomyelitis and either xenotropic murine leukemia virus-related virus or polytropic murine leukemia virus. MBio. 2012 Sep 18;3(5). pii: e00266-12. doi: 10.1128/mBio.00266-12. Print 2012. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448165/ (Full article)

 

Cytotoxic lymphocyte microRNAs as prospective biomarkers for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis

Abstract:

BACKGROUND: Immune dysfunction associated with a disease often has a molecular basis. A novel group of molecules known as microRNAs (miRNAs) have been associated with suppression of translational processes involved in cellular development and proliferation, protein secretion, apoptosis, immune function and inflammatory processes. MicroRNAs may be implicated in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME), where immune function is impaired. The objective of this study was to determine the association between miRNAs in cytotoxic cells and CFS/ME.

METHODS: Natural Killer (NK) and CD8(+)T cells were preferentially isolated from peripheral blood mononuclear cells from all participants (CFS/ME, n=28; mean age=41.8±9.6 years and controls, n=28; mean age=45.3±11.7 years), via negative cell enrichment. Following total RNA extraction and subsequent synthesis of cDNA, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to determine the expression levels of nineteen miRNAs.

RESULTS: There was a significant reduction in the expression levels of miR-21, in both the NK and CD8(+)T cells in the CFS/ME sufferers. Additionally, the expression of miR-17-5p, miR-10a, miR-103, miR-152, miR-146a, miR-106, miR-223 and miR-191 was significantly decreased in NK cells of CFS/ME patients in comparison to the non-fatigued controls.

LIMITATIONS: The results from these investigations are not yet transferable into the clinical setting, further validatory studies are now required.

CONCLUSIONS: Collectively these miRNAs have been associated with apoptosis, cell cycle, development and immune function. Changes in miRNAs in cytotoxic cells may reduce the functional capacity of these cells and disrupt effective cytotoxic activity along with other immune functions in CFS/ME patients.

Copyright © 2012 Elsevier B.V. All rights reserved.

 

Source: Brenu EW, Ashton KJ, van Driel M, Staines DR, Peterson D, Atkinson GM, Marshall-Gradisnik SM. Cytotoxic lymphocyte microRNAs as prospective biomarkers for Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. J Affect Disord. 2012 Dec 10;141(2-3):261-9. doi: 10.1016/j.jad.2012.03.037. Epub 2012 May 8. https://www.ncbi.nlm.nih.gov/pubmed/22572093

 

A double-blind, placebo-controlled, randomized, clinical trial of the TLR-3 agonist rintatolimod in severe cases of chronic fatigue syndrome

Abstract:

BACKGROUND: Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a severely debilitating disease of unknown pathogenesis consisting of a variety of symptoms including severe fatigue. The objective of the study was to examine the efficacy and safety of a TLR-3 agonist, rintatolimod (Poly I: C(12)U), in patients with debilitating CFS/ME.

METHODS AND FINDINGS: A Phase III prospective, double-blind, randomized, placebo-controlled trial comparing twice weekly IV rintatolimod versus placebo was conducted in 234 subjects with long-standing, debilitating CFS/ME at 12 sites. The primary endpoint was the intra-patient change from baseline at Week 40 in exercise tolerance (ET). Secondary endpoints included concomitant drug usage, the Karnofsky Performance Score (KPS), Activities of Daily Living (ADL), and Vitality Score (SF 36). Subjects receiving rintatolimod for 40 weeks improved intra-patient placebo-adjusted ET 21.3% (p = 0.047) from baseline in an intention-to-treat analysis. Correction for subjects with reduced dosing compliance increased placebo-adjusted ET improvement to 28% (p = 0.022). The improvement observed represents approximately twice the minimum considered medically significant by regulatory agencies. The rintatolimod cohort vs. placebo also reduced dependence on drugs commonly used by patients in an attempt to alleviate the symptoms of CFS/ME (p = 0.048). Placebo subjects crossed-over to receive rintatolimod demonstrated an intra-patient improvement in ET performance at 24 weeks of 39% (p = 0.04). Rintatolimod at 400 mg twice weekly was generally well-tolerated.

CONCLUSIONS/SIGNIFICANCE: Rintatolimod produced objective improvement in ET and a reduction in CFS/ME related concomitant medication usage as well as other secondary outcomes.

TRIAL REGISTRATION: ClinicalTrials.gov NCT00215800.

 

Source: Strayer DR, Carter WA, Stouch BC, Stevens SR, Bateman L, Cimoch PJ, Lapp CW, Peterson DL; Chronic Fatigue Syndrome AMP-516 Study Group, Mitchell WM.Collaborators (12). A double-blind, placebo-controlled, randomized, clinical trial of the TLR-3 agonist rintatolimod in severe cases of chronic fatigue syndrome. PLoS One. 2012;7(3):e31334. doi: 10.1371/journal.pone.0031334. Epub 2012 Mar 14.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303772/ (Full article)

 

Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is a debilitating disease of unknown etiology that is estimated to affect 17 million people worldwide. Studying peripheral blood mononuclear cells (PBMCs) from CFS patients, we identified DNA from a human gammaretrovirus, xenotropic murine leukemia virus-related virus (XMRV), in 68 of 101 patients (67%) as compared to 8 of 218 (3.7%) healthy controls. Cell culture experiments revealed that patient-derived XMRV is infectious and that both cell-associated and cell-free transmission of the virus are possible. Secondary viral infections were established in uninfected primary lymphocytes and indicator cell lines after their exposure to activated PBMCs, B cells, T cells, or plasma derived from CFS patients. These findings raise the possibility that XMRV may be a contributing factor in the pathogenesis of CFS.

Comment in:

Erratum in: Partial retraction. Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. [Science. 2011]

Retraction in: Retraction. [Science. 2011]

 

Source: Lombardi VC, Ruscetti FW, Das Gupta J, Pfost MA, Hagen KS, Peterson DL, Ruscetti SK, Bagni RK, Petrow-Sadowski C, Gold B, Dean M, Silverman RH, Mikovits JA. Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. Science. 2009 Oct 23;326(5952):585-9. doi: 10.1126/science.1179052. Epub 2009 Oct 8. http://science.sciencemag.org/content/326/5952/585.long (Full article)

 

Frequent HHV-6 reactivation in multiple sclerosis (MS) and chronic fatigue syndrome (CFS) patients

Abstract:

BACKGROUND: HHV-6 is a ubiquitous virus and its infection usually occurs in childhood and then becomes a latent infection. HHV-6 reactivation has been shown to play a role in the pathogenesis of AIDS and several other diseases.

OBJECTIVES: To determine what role HHV-6 infection or reactivation plays in the pathogenesis of multiple sclerosis (MS) and chronic fatigue syndrome (CFS).

RESULTS: Twenty-one MS and 35 CFS patients were studied and followed clinically. In these patients, we measured HHV-6 IgG and IgM antibody levels and also analyzed their peripheral blood mononuclear cells (PBMCs) for the presence of HHV-6, using a short term culture assay. In both MS and CFS patients, we found higher levels of HHV-6 IgM antibody and elevated levels of IgG antibody when compared to healthy controls. Seventy percent of the MS patients studied contained IgM antibodies for HHV-6 late antigens (capsid), while only 15% of the healthy donors (HD) and 20% of the patients with other neurological disorders (OND) had HHV-6 IgM antibodies. Higher frequency of IgM antibody was also detected in CFS patients (57.1%) compared to HD (16%). Moreover, 54% of CFS patients exhibited antibody to HHV-6 early protein (p41/38) compared to only 8.0% of the HD. Elevated IgG antibody titers were detected in both the MS and the CFS patients. PBMCs from MS, CFS and HD were analyzed in a short term culture assay in order to detect HHV-6 antigen expressing cells and to characterize the viral isolates obtained as either Variant A or B. Fifty-four percent of MS patients contained HHV-6 early and late antigen producing cells and 87% of HHV-6 isolates were Variant B. Isolates from CFS, patients were predominately Variant A (70%) and isolates from HD were predominately Variant B (67%). Moreover, one isolate from OND was also Variant B. Persistent HHV-6 infection was found in two CFS patients over a period of 2.5 years and HHV-6 specific cellular immune responses were detected in PBMCs from ten CFS patients.

CONCLUSION: In both MS and CFS patients, we found increased levels of HHV-6 antibody and HHV-6 DNA. A decrease in cellular immune responses was also detected in CFS patients. These data suggest that HHV-6 reactivation plays a role in the pathogenesis of these disorders.

 

Source: Ablashi DV, Eastman HB, Owen CB, Roman MM, Friedman J, Zabriskie JB, Peterson DL, Pearson GR, Whitman JE. Frequent HHV-6 reactivation in multiple sclerosis (MS) and chronic fatigue syndrome (CFS) patients. J Clin Virol. 2000 May;16(3):179-91. http://www.ncbi.nlm.nih.gov/pubmed/10738137

 

Biochemical evidence for a novel low molecular weight 2-5A-dependent RNase L in chronic fatigue syndrome

Abstract:

Previous studies from this laboratory have demonstrated a statistically significant dysregulation in several key components of the 2′,5′-oligoadenylate (2-5A) synthetase/RNase L and PKR antiviral pathways in chronic fatigue syndrome (CFS) (Suhadolnik et al. Clin Infect Dis 18, S96-104, 1994; Suhadolnik et al. In Vivo 8, 599-604, 1994). Two methodologies have been developed to further examine the upregulated RNase L activity in CFS.

First, photoaffinity labeling of extracts of peripheral blood mononuclear cells (PBMC) with the azido 2-5A photoaffinity probe, [32P]pApAp(8-azidoA), followed by immunoprecipitation with a polyclonal antibody against recombinant, human 80-kDa RNase L and analysis under denaturing conditions. A subset of individuals with CFS was identified with only one 2-5A binding protein at 37 kDa, whereas in extracts of PBMC from a second subset of CFS PBMC and from healthy controls, photolabeled/immunoreactive 2-5A binding proteins were detected at 80, 42, and 37 kDa.

Second, analytic gel permeation HPLC was completed under native conditions. Extracts of healthy control PBMC revealed 2-5A binding and 2-5A-dependent RNase L enzyme activity at 80 and 42 kDa as determined by hydrolysis of poly(U)-3′-[32P]pCp. A subset of CFS PBMC contained 2-5A binding proteins with 2-5A-dependent RNase L enzyme activity at 80, 42, and 30 kDa. However, a second subset of CFS PBMC contained 2-5A binding and 2-5A-dependent RNase L enzyme activity only at 30 kDa. Evidence is provided indicating that the RNase L enzyme dysfunction in CFS is more complex than previously reported.

 

Source: Suhadolnik RJ, Peterson DL, O’Brien K, Cheney PR, Herst CV, Reichenbach NL, Kon N, Horvath SE, Iacono KT, Adelson ME, De Meirleir K, De Becker P,Charubala R, Pfleiderer W. Biochemical evidence for a novel low molecular weight 2-5A-dependent RNase L in chronic fatigue syndrome. J Interferon Cytokine Res. 1997 Jul;17(7):377-85. http://www.ncbi.nlm.nih.gov/pubmed/9243369

 

Changes in the 2-5A synthetase/RNase L antiviral pathway in a controlled clinical trial with poly(I)-poly(C12U) in chronic fatigue syndrome

Abstract:

Latent 2′, 5′-oligoadenylate (2-5A) synthetase activity, bioactive 2-5A and RNase L activity were measured in extracts of peripheral blood mononuclear cells (PMBC) before and during a randomized, multicenter, placebo-controlled, double-blind study of poly(I)-poly(C12U) in individuals with chronic fatigue syndrome (CFS) as defined by the Centers for Disease Control and Prevention. The mean values for bioactive 2-5A and RNase L activity were significantly elevated at baseline compared to controls (p < .0001 and p = .001, respectively). In individuals that presented with elevated RNase L activity at baseline, therapy with poly(I)-poly(C12U) resulted in a significant decrease in both bioactive 2-5A and RNase L activity (p = .09 and p = .005, respectively). Decrease in RNase L activity in individuals treated with poly(I)-poly(C12U) correlated with cognitive improvement (p = .007). Poly(I)-poly(C12U) therapy resulted in a significant decrease in bioactive 2-5A and RNase L activity in agreement with clinical and neuropsychological improvements (Strayer DR, et al., Clin. Infectious Dis. 18:588-595, 1994). The results described show that poly(I)-poly(C12U) is a biologically active drug in CFS.

 

Source: Suhadolnik RJ, Reichenbach NL, Hitzges P, Adelson ME, Peterson DL, Cheney P, Salvato P, Thompson C, Loveless M, Müller WE, et al. Changes in the 2-5A synthetase/RNase L antiviral pathway in a controlled clinical trial with poly(I)-poly(C12U) in chronic fatigue syndrome. In Vivo. 1994 Jul-Aug;8(4):599-604. http://www.ncbi.nlm.nih.gov/pubmed/7893988

 

Upregulation of the 2-5A synthetase/RNase L antiviral pathway associated with chronic fatigue syndrome

Abstract:

Levels of 2′,5′-oligoadenylate (2-5A) synthetase, bioactive 2-5A, and RNase L were measured in extracts of peripheral blood mononuclear cells (PBMCs) from 15 individuals with chronic fatigue syndrome (CFS) before and during therapy with the biological response modifier poly(I).poly(C12U) and were compared with levels in healthy controls.

Patients differed significantly from controls in having a lower mean basal level of latent 2-5A synthetase (P < .0001), a higher pretreatment level of bioactive 2-5A (P = .002), and a higher level of pretherapy RNase L activity (P < .0001). PBMC extracts from 10 persons with CFS had a mean basal level of activated 2-5A synthetase higher than the corresponding control value (P = .009). All seven pretherapy PBMC extracts tested were positive for the replication of human herpesvirus 6 (HHV-6).

Therapy with poly(I).poly(C12U) resulted in a significant decrease in HHV-6 activity (P < .01) and in downregulation of the 2-5A synthetase/RNase L pathway in temporal association with clinical and neuropsychological improvement. The upregulated 2-5A pathway in CFS before therapy is consistent with an activated immune state and a role for persistent viral infection in the pathogenesis of CFS. The response to therapy suggests direct or indirect antiviral activity of poly(I).poly(C12U) in this situation.

 

Source: Suhadolnik RJ, Reichenbach NL, Hitzges P, Sobol RW, Peterson DL, Henry B, Ablashi DV, Müller WE, Schröder HC, Carter WA, et al. Upregulation of the 2-5A synthetase/RNase L antiviral pathway associated with chronic fatigue syndrome. Clin Infect Dis. 1994 Jan;18 Suppl 1:S96-104. http://www.ncbi.nlm.nih.gov/pubmed/8148461