Transient receptor potential melastatin 3 dysfunction in post COVID-19 condition and myalgic encephalomyelitis/chronic fatigue syndrome patients

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe multisystemic condition associated with post-infectious onset, impaired natural killer (NK) cell cytotoxicity and impaired ion channel function, namely Transient Receptor Potential Melastatin 3 (TRPM3). Long-term effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has resulted in neurocognitive, immunological, gastrointestinal, and cardiovascular manifestations recently recognised as post coronavirus disease 2019 (COVID-19) condition. The symptomatology of ME/CFS overlaps significantly with post COVID-19; therefore, this research aimed to investigate TRPM3 ion channel function in post COVID-19 condition patients.

Methods: Whole-cell patch-clamp technique was used to measure TRPM3 ion channel activity in isolated NK cells of N = 5 ME/CFS patients, N = 5 post COVID-19 patients, and N = 5 healthy controls (HC). The TRPM3 agonist, pregnenolone sulfate (PregS) was used to activate TRPM3 function, while ononetin was used as a TRPM3 antagonist.

Results: As reported in previous research, PregS-induced TRPM3 currents were significantly reduced in ME/CFS patients compared with HC (p = 0.0048). PregS-induced TRPM3 amplitude was significantly reduced in post COVID-19 condition compared with HC (p = 0.0039). Importantly, no significant difference was reported in ME/CFS patients compared with post COVID-19 condition as PregS-induced TRPM3 currents of post COVID-19 condition patients were similar of ME/CFS patients currents (p > 0.9999). Isolated NK cells from post COVID-19 condition and ME/CFS patients were resistant to ononetin and differed significantly with HC (p < 0.0001).

Conclusion: The results of this investigation suggest that post COVID-19 condition patients may have impaired TRPM3 ion channel function and provide further evidence regarding the similarities between post COVID-19 condition and ME/CFS. Impaired TRPM3 channel activity in post COVID-19 condition patients suggest impaired ion mobilisation which may consequently impede cell function resulting in chronic post-infectious symptoms. Further investigation into TRPM3 function may elucidate the pathomechanism, provide a diagnostic and therapeutic target for post COVID-19 condition patients and commonalities with ME/CFS patients.

Source: Sasso EM, Muraki K, Eaton-Fitch N, Smith P, Lesslar OL, Deed G, Marshall-Gradisnik S. Transient receptor potential melastatin 3 dysfunction in post COVID-19 condition and myalgic encephalomyelitis/chronic fatigue syndrome patients. Mol Med. 2022 Aug 19;28(1):98. doi: 10.1186/s10020-022-00528-y. PMID: 35986236.  https://molmed.biomedcentral.com/articles/10.1186/s10020-022-00528-y (Full text)

Broken Connections: The Evidence for Neuroglial Failure in ME/CFS

Abstract:

In spite of decades of research, the pathobiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is still poorly understood. Several pathomechanisms have been identified, yet, it remains unclear how they are related and which of them may be upstream or downstream.

In this paper, we present a theoretical strategy that may help clarify the causal chain of pathophysiological events in ME/CFS. We propose to focus on the common final histological pathway of ME/CFS and suggest to ask: Which cellular compartment may explain the pathological processes and clinical manifestations observed in ME/CFS? Any functional unit consistently identified through this search may then be a plausible candidate for further exploration.

For this “histological” approach we have compiled a list of 22 undisputed clinical and pathophysiological features of ME/CFS that need to be plausibly and most directly explained by the dysfunctional cellular unit in question. For each feature we have searched the literature for pathophysiological explanations and analyzed if they may point to the same functional cellular unit. Through this search we have identified the CNS neuroglia – microglia and astroglia – as the one functional unit in the human body which may best explain all and any of the clinical and pathological features, dysfunctions and observations described for ME/CFS.

While this points to neuroinflammation as the central hub in ME/CFS, it also points to a novel understanding of the neuroimmune basis of ME/CFS. After all, the neuroglial cells are now understood as the functional matrix of the human brain connectome which operates beyond and above specific brain centers, receptor units or neurotransmitter systems and integrates innate immune functions with CNS regulatory functions pertaining to autonomous regulation, cellular metabolism and the stress response.

Source: Renz-Polster, H. (2021, August 3). Broken Connections: The Evidence for Neuroglial Failure in ME/CFS. https://doi.org/10.31219/osf.io/ef3n4 https://osf.io/ef3n4/ (Full text)

The occurrence of hyperactivated platelets and fibrinaloid microclots in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

We have previously demonstrated that platelet poor plasma (PPP) obtained from patients with LongCovid/Post-Acute Sequelae of COVID-19 (PASC) is characterized by a hypercoagulable state reflected in hyperactivated platelets and the presence of considerable numbers of fibrin(ogen) amyloid microclots or fibrinaloid microclots. Due to substantial overlap in symptoms and aetiology between PASC and ME/CFS, we investigated whether coagulopathies, platelet hyperactivation and/or fibrin amyloid formation differed between individuals exhibiting ME/CFS and gender- and age-matched healthy controls.

ME/CFS patients were statistically far more hypercoagulable as judged by thromboelastography of both whole blood and platelet-poor plasma. The area of plasma images containing fibrinaloid microclots was commonly more than 10-fold greater in untreated platelet-poor plasma from individuals with ME/CFS than in that of healthy controls. A similar difference was found when the plasma samples were treated with thrombin. Using fluorescently labelled PAC-1, which recognizes glycoprotein IIb/IIIa, and CD62P, which binds P-selectin, we observed massive hyperactivation and spreading of platelets in samples from individuals with ME/CFS. Using a quantitative scoring system, this was found to have a score of 2.72 ± 1.24 vs 1.00 (activation with pseudopodia formation) for healthy controls.

We conclude that ME/CFS is accompanied by substantial and measurable changes in coagulability, platelet hyperactivation, and fibrinaloid microclot formation. However, fibrinaloid microclot load was not as prevalent as was previously noted in PASC. Fibrinaloid microclots, in particular can provide a ready explanation, via (temporary) blockage of microcapillaries and hence ischaemia, for many of the symptoms, such as fatigue, seen in patients with ME/CFS. The discovery of these biomarkers pointing to significant and systemic endothelial inflammation, represents an important development in ME/CFS research. It also points at novel treatment strategies using known drugs and/or nutraceuticals that target systemic vascular pathology and endothelial inflammation.

Source: Massimo Nunes, Arneaux Kruger, Amy Proal et al. The occurrence of hyperactivated platelets and fibrinaloid microclots in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), 08 June 2022, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-1727226/v1 (Full text)

The Pathobiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Case for Neuroglial Failure

Abstract:

Although myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has a specific and distinctive profile of clinical features, the disease remains an enigma because causal explanation of the pathobiological matrix is lacking. Several potential disease mechanisms have been identified, including immune abnormalities, inflammatory activation, mitochondrial alterations, endothelial and muscular disturbances, cardiovascular anomalies, and dysfunction of the peripheral and central nervous systems. Yet, it remains unclear whether and how these pathways may be related and orchestrated.

Here we explore the hypothesis that a common denominator of the pathobiological processes in ME/CFS may be central nervous system dysfunction due to impaired or pathologically reactive neuroglia (astrocytes, microglia and oligodendrocytes). We will test this hypothesis by reviewing, in reference to the current literature, the two most salient and widely accepted features of ME/CFS, and by investigating how these might be linked to dysfunctional neuroglia.

From this review we conclude that the multifaceted pathobiology of ME/CFS may be attributable in a unifying manner to neuroglial dysfunction. Because the two key features – post exertional malaise and decreased cerebral blood flow – are also recognized in a subset of patients with post-acute sequelae COVID, we suggest that our findings may also be pertinent to this entity.

Source: Renz-Polster H, Tremblay ME, Bienzle D, Fischer JE. The Pathobiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Case for Neuroglial Failure. Front Cell Neurosci. 2022 May 9;16:888232. doi: 10.3389/fncel.2022.888232. PMID: 35614970; PMCID: PMC9124899. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124899/ (Full text)

Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Who Have Already Visited Some Medical Institutions: The Points of Diagnosis and Treatment

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a syndrome primarily presenting fatigue-based symptoms; however, the challenge is this syndrome has no diagnostic biomarkers. The diagnosis and treatment of ME/CFS require highly specialized knowledge and skills. There is no definitive therapy for ME/CFS, including Chinese herbal medicine, vitamins, and/or L-carnitine. We recognised ME/CFS-like symptom in some patients infected COVID-19 . This directed our attention towards the research progress on the new research on the mechanisms and treatment of ME/CFS.

Source: Shimomura T. [Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Who Have Already Visited Some Medical Institutions: The Points of Diagnosis and Treatment]. Brain Nerve. 2022 May;74(5):660-667. Japanese. doi: 10.11477/mf.1416202094. PMID: 35589661. https://pubmed.ncbi.nlm.nih.gov/35589661/ [Article in Japanese]

Elevated ATG13 in serum of patients with ME/CFS stimulates oxidative stress response in microglial cells via activation of receptor for advanced glycation end products (RAGE)

Abstract:

Myalgic Encephalomyelitis, also known as Chronic Fatigue Syndrome (ME/CFS), is a multisystem illness characterized by extreme muscle fatigue associated with pain, neurocognitive impairment, and chronic inflammation. Despite intense investigation, the molecular mechanism of this disease is still unknown. Here we demonstrate that autophagy-related protein ATG13 is strongly upregulated in the serum of ME/CFS patients, indicative of impairment in the metabolic events of autophagy.

A Thioflavin T-based protein aggregation assay, array screening for autophagy-related factors, densitometric analyses, and confirmation with ELISA revealed that the level of ATG13 was strongly elevated in serum samples of ME/CFS patients compared to age-matched controls. Moreover, our microglia-based oxidative stress response experiments indicated that serum samples of ME/CFS patients evoke the production of reactive oxygen species (ROS) and nitric oxide in human HMC3 microglial cells, whereas neutralization of ATG13 strongly diminishes the production of ROS and NO, suggesting that ATG13 plays a role in the observed stress response in microglial cells. Finally, an in vitro ligand binding assay provided evidence that ATG13 employs the Receptor for Advanced Glycation End-products (RAGE) to stimulate ROS in microglial cells.

Collectively, our results suggest that an impairment of autophagy following the release of ATG13 into serum could be a pathological signal in ME/CFS.

Source: Gottschalk G, Peterson D, Knox K, Maynard M, Whelan RJ, Roy A. Elevated ATG13 in serum of patients with ME/CFS stimulates oxidative stress response in microglial cells via activation of receptor for advanced glycation end products (RAGE). Mol Cell Neurosci. 2022 Apr 26:103731. doi: 10.1016/j.mcn.2022.103731. Epub ahead of print. PMID: 35487443. https://www.sciencedirect.com/science/article/abs/pii/S1044743122000379?via%3Dihub (Full text)

Editorial: Current Insights Into Complex Post-infection Fatigue Syndromes With Unknown Aetiology: The Case of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Beyond

Introduction:

Black plague epidemics in Medieval Europe, the Spanish Flu pandemic during the first world war, and the pandemic of COVID-19 disease are just three devastating examples of the fragile co-existence between human beings and the microbial world. Remarkably, the human immune system with its innate and adaptive arms recognizes and clears the invading pathogens in most cases. However, like a scar after an injury, some people who had suffered from acute infections remain ill long after the clearance of the pathogen itself. These individuals develop complex fatigue-related syndromes whose pathological mechanisms remain poorly understood. A prime example of such syndromes is the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) characterized by persistent fatigue and post-exertional malaise among other symptoms (1). Unfortunately, its diagnosis remains challenging due to the inexistence of objective biomarkers that could identify cases. However, researchers are gathering around multidisciplinary networks, such as the US ME/CFS Clinician Coalition and the European Network on ME/CFS, with the aim of fostering collaboration, standardizing research and clinical practices, while accelerating biomarker discovery (25). Less-known fatigue-related syndromes have been recently reported after the outbreaks of Ebola virus, Dengue virus, and Chikungunya virus in the Tropics (68). However, it is still unclear whether these syndromes constitute clinical entities beyond ME/CFS itself.

Read the rest of this article HERE.

Source: Westermeier F, Lacerda EM, Scheibenbogen C and Sepúlveda N (2022) Editorial: Current Insights Into Complex Post-infection Fatigue Syndromes With Unknown Aetiology: The Case of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Beyond. Front. Med. 9:862953. doi: 10.3389/fmed.2022.862953  https://www.frontiersin.org/articles/10.3389/fmed.2022.862953/full (Full text)

Impaired TRPM3-dependent calcium influx and restoration using Naltrexone in natural killer cells of myalgic encephalomyelitis/chronic fatigue syndrome patients

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a serious disorder of unknown aetiology. While the pathomechanism of ME/CFS remains elusive, reduced natural killer (NK) cell cytotoxic function is a consistent immunological feature. NK cell effector functions rely on long-term sustained calcium (Ca2+) influx. In recent years evidence of transient receptor potential melastatin 3 (TRPM3) dysfunction supports the hypothesis that ME/CFS is potentially an ion channel disorder. Specifically, reports of single nucleotide polymorphisms, low surface expression and impaired function of TRPM3 have been reported in NK cells of ME/CFS patients. It has been reported that mu (µ)-opioid receptor (µOR) agonists, known collectively as opioids, inhibit TRPM3. Naltrexone hydrochloride (NTX), a µOR antagonist, negates the inhibitory action of µOR on TRPM3 function. Importantly, it has recently been reported that NTX restores impaired TRPM3 function in NK cells of ME/CFS patients.

Methods: Live cell immunofluorescent imaging was used to measure TRPM3-dependent Ca2+ influx in NK cells isolated from n = 10 ME/CFS patients and n = 10 age- and sex-matched healthy controls (HC) following modulation with TRPM3-agonist, pregnenolone sulfate (PregS) and TRPM3-antaognist, ononetin. The effect of overnight (24 h) NTX in vitro treatment on TRPM3-dependent Ca2+ influx was determined.

Results: The amplitude (p < 0.0001) and half-time of Ca2+ response (p < 0.0001) was significantly reduced at baseline in NK cells of ME/CFS patients compared with HC. Overnight treatment of NK cells with NTX significantly improved TRPM3-dependent Ca2+ influx in ME/CFS patients. Specifically, there was no significance between HC and ME/CFS patients for half-time response, and the amplitude of Ca2+ influx was significantly increased in ME/CFS patients (p < 0.0001).

Conclusion: TRPM3-dependent Ca2+ influx was restored in ME/CFS patients following overnight treatment of isolated NK cells with NTX in vitro. Collectively, these findings validate that TRPM3 loss of function results in altered Ca2+ influx supporting the growing evidence that ME/CFS is a TRP ion channel disorder and that NTX provides a potential therapeutic intervention for ME/CFS.

Source: Eaton-Fitch N, Du Preez S, Cabanas H, Muraki K, Staines D, Marshall-Gradisnik S. Impaired TRPM3-dependent calcium influx and restoration using Naltrexone in natural killer cells of myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med. 2022 Feb 16;20(1):94. doi: 10.1186/s12967-022-03297-8. PMID: 35172836. https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-022-03297-8  (Full text)

Circadian rhythm disruption in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Implications for the post-acute sequelae of COVID-19

Abstract:

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a common and disabling disorder primarily characterized by persistent fatigue and exercise intolerance, with associated sleep disturbances, autonomic dysfunction, and cognitive problems. The causes of ME/CFS are not well understood but may coincide with immune and inflammatory responses following viral infections. During the current SARS-CoV2 coronavirus pandemic, ME/CFS has been increasingly reported to overlap with persistent “long COVID” symptoms, also called the post-acute sequelae of COVID-19 (PASC).

Given the prominence of activity and sleep problems in ME/CFS, circadian rhythm disruption has been examined as a contributing factor in ME/CFS. While these studies of circadian rhythms have been pursued for decades, evidence linking circadian rhythms to ME/CFS remains inconclusive. A major limitation of older chronobiology studies of ME/CFS was the unavailability of modern molecular methods to study circadian rhythms and incomplete understanding of circadian rhythms outside the brain in peripheral organ systems. Major methodological and conceptual advancements in chronobiology have since been made.

Over the same time, biomarker research in ME/CFS has progressed. Together, these new developments may justify renewed interest in circadian rhythm research in ME/CFS. Presently, we review ME/CFS from the perspective of circadian rhythms, covering both older and newer studies that make use of modern molecular methods. We focus on transforming growth factor beta (TGFB), a cytokine that has been previously associated with ME/CFS and has an important role in circadian rhythms, especially in peripheral cells.

We propose that disrupted TGFB signaling in ME/CFS may play a role in disrupting physiological rhythms in sleep, activity, and cognition, leading to the insomnia, energy disturbances, cognition problems, depression, and autonomic dysfunction associated with ME/CFS. Since SARS-like coronavirus infections cause persistent changes in TGFB and previous coronavirus outbreaks have caused ME/CFS-like syndromes, chronobiological considerations may have immediate implications for understanding ME/CFS in the context of the COVID-19 pandemic and possibly suggest new avenues for therapeutic interventions.

Source: Michael J. McCarthy. Circadian rhythm disruption in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Implications for the post-acute sequelae of COVID-19. Brain, Behavior, & Immunity – Health, Volume 20, 2022, 100412, ISSN 2666-3546, https://doi.org/10.1016/j.bbih.2022.100412. (Full text)

Decreased NO production in endothelial cells exposed to plasma from ME/CFS patients

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease characterized by severe and persistent fatigue. Along with clinical studies showing endothelial dysfunction (ED) in a subset of ME/CFS patients, we have recently reported altered ED-related microRNAs in plasma from affected individuals. Inadequate nitric oxide (NO), mainly produced by the endothelial isoform of nitric oxide synthase (eNOS) in endothelial cells (ECs), is a major cause of ED. In this study, we hypothesized that plasma from that cohort of ME/CFS patients induces eNOS-related ED in vitro.

To test this, we cultured human umbilical vein endothelial cells (HUVECs) in the presence of either plasma from ME/CFS patients (ME/CFS-plasma, n = 11) or healthy controls (HC-plasma, n = 12). Then, we measured the NO production in the absence or presence of tyrosine kinase and G protein-coupled receptors agonists (TKRs and GPCRs, respectively), well-known to activate eNOS in ECs.

Our data show that HUVECs incubated with ME/CFS-plasma produced less NO either in the absence or presence of eNOS activators compared to ones in presence of HC-plasma. Also, the NO production elicited by bradykinin, histamine, and acetylcholine (GPCRs agonists) was more affected than the one triggered by insulin (TKR agonist). Finally, inhibitory eNOS phosphorylation at Thr495 was higher in HUVECs treated with ME/CFS-plasma compared to the same treatment with HC-plasma. In conclusion, this study in vitro shows a decreased NO production in HUVECs exposed to plasma from ME/CFS patients, suggesting an unreported role of eNOS in the pathophysiology of this disease

Source: Bertinat R, Villalobos-Labra R, Hofmann L, Blauensteiner J, Sepúlveda N, Westermeier F. Decreased NO production in endothelial cells exposed to plasma from ME/CFS patients. Vascul Pharmacol. 2022 Jan 21:106953. doi: 10.1016/j.vph.2022.106953. Epub ahead of print. PMID: 35074481. https://pubmed.ncbi.nlm.nih.gov/35074481/