A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity

Abstract:

We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions.

We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls.

Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls.

Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people.

Copyright © 2016 Elsevier B.V. All rights reserved.

 

Source: Fukuda S, Nojima J, Motoki Y, Yamaguti K, Nakatomi Y, Okawa N, Fujiwara K, Watanabe Y, Kuratsune H. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity. Biol Psychol. 2016 Jul;118:88-93. doi: 10.1016/j.biopsycho.2016.05.005. Epub 2016 May 17. https://www.ncbi.nlm.nih.gov/pubmed/27224647

 

The Many Neuroprogressive Actions of Tryptophan Catabolites (TRYCATs) that may be Associated with the Pathophysiology of Neuro-Immune Disorders

Abstract:

Many, if not all, chronic medical, neurodegenerative and neuroprogressive illnesses are characterised by chronic immune activation, oxidative and nitrosative stress (O&NS) and systemic inflammation. These factors, notably elevated pro-inflammatory cytokines, activate indoleamine 2,3-dioxygenase (IDO) leading to an upregulated tryptophan catabolite (TRYCAT) pathway of tryptophan degradation in the periphery and in the brain. In such conditions the TRYCAT pathway becomes the predominant system for tryptophan degradation in all body compartments.

In this paper we review the pathways whereby TRYCATs may play a role in neuro-inflammatory and neuroprogressive disease. Thus chronic activation of the TRYCAT pathway leads to the production of a range of neuroactive, neuroprotective and neurotoxic TRYCATs. Some TRYCATs such as quinolinic acid act as potent neurotoxins which inhibit ATP production by mitochondria, provoke increases in O&NS, disrupt neuron glial communication and blood brain barrier integrity, induce apoptosis of glial cells, directly damage neurons and function as a N-methyl D-aspartate (NMDA) receptor agonist.

Other TRYCATs such as kynurenic acid function as antagonists of NMDA, α- amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors and act to regulate levels of glutamate and dopamine.

The neuroprotective functions of this TRYCAT are likely exercised via engagement with alpha7 nicotinic acetylcholine and aryl hydrocarbon receptors but the neuroprotective effects stemming from elevated kynurenic acid levels come at the price of severely compromised neurocognitive function and emotional processing. Other TRYCATS also possess neurotoxic or neuroprotective properties via pro-oxidant and antioxidant effects.

Here we discuss the involvement of the above mentioned TRYCAT pathways in schizophrenia, Alzheimer’s disease and chronic fatigue syndrome.

Source: Morris G, Carvalho AF, Anderson G, Galecki P, Maes M. The Many Neuroprogressive Actions of Tryptophan Catabolites (TRYCATs) that may be Associated with the Pathophysiology of Neuro-Immune Disorders. Curr Pharm Des. 2016;22(8):963-77. https://www.ncbi.nlm.nih.gov/pubmed/26667000

 

A new case definition of Neuro-Inflammatory and Oxidative Fatigue (NIOF), a neuroprogressive disorder, formerly known as chronic fatigue syndrome or Myalgic Encephalomyelitis: results of multivariate pattern recognition methods and external validation by neuro-immune biomarkers

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) or Myalgic Encephalomyelitis (ME) is characterized by neuro-psychiatric (e.g. depression, irritability, sleep disorders, autonomic symptoms and neurocognitive defects) and physio-somatic (fatigue, a flu-like malaise, hyperalgesia, irritable bowel, muscle pain and tension) symptoms. New ME/CFS case definitions based on consensus criteria among experts are largely inadequate, e.g. those of the US Institute of Medicine .

OBJECTIVES: The aim of the present study was to delineate a new case definition of ME/CFS based on pattern recognition methods and using neuro-immune, inflammatory, oxidative and nitrosative stress (neuro-IO&NS) biomarkers as external validating criteria.

METHODS: We measured the 12-item Fibromyalgia and Chronic Fatigue Syndrome Rating (FF) Scale in 196 subjects with CFS (CDC criteria) and 83 with chronic fatigue. The “Neuro-IO&NS” biomarkers were: IgM / IgA responses against LPS of gut commensal bacteria (leaky gut), IgM responses to O&NS modified neoepitopes, autoimmunity to serotonin, plasma interleukin-1 (IL-1) and serum neopterin.

RESULTS: Cluster analysis showed the presence of two well-separated clusters with highly significant differences in symptoms and biomarkers. The cluster with higher scores on all FF items was externally validated against all IO&NS biomarkers and therefore this diagnostic group was labeled “Neuro-IO&NS Fatigue” or “Neuro-Inflammatory and Oxidative Fatigue” (NIOF). An algorithm was constructed which defined NIOF as chronic fatigue and 4 or more of the following 6 symptoms: muscle tension, memory disturbances, sleep disorders, irritable bowel, headache or a flu-like malaise. There was a significant overlap between NIOF and CFS although NIOF criteria were much more restrictive. Factor analysis showed two factors, the first a fatigue-hyperalgesia (fibromyalgic complaints) and the second a fatigue-depression factor.

 

Source: Maes M. A new case definition of Neuro-Inflammatory and Oxidative Fatigue (NIOF), a neuroprogressive disorder, formerly known as chronic fatigue syndrome or Myalgic Encephalomyelitis: results of multivariate pattern recognition methods and external validation by neuro-immune biomarkers. Neuro Endocrinol Lett. 2015;36(4):320-9. https://www.ncbi.nlm.nih.gov/pubmed/26454487

 

Fibromyalgia and chronic fatigue: the underlying biology and related theoretical issues

Abstract:

There is an increasing interest in understanding the biological mechanism underpinning fibromyalgia (FM) and chronic fatigue syndrome (CFS). Despite the presence of mixed findings in this area, a few biological systems have been consistently involved, and the increasing number of studies in the field is encouraging. This chapter will focus on inflammatory and oxidative stress pathways and on the neuroendocrine system, which have been more commonly examined.

Chronic inflammation, together with raised levels of oxidative stress and mitochondrial dysfunction, has been increasingly associated with the manifestation of symptoms such as pain, fatigue, impaired memory, and depression, which largely characterise at least some patients suffering from CFS and FM.

Furthermore, the presence of blunted hypothalamic-pituitary-adrenal axis activity, with reduced cortisol secretion both at baseline and in response to stimulation tests, suggests a role for the hypothalamic-pituitary-adrenal axis and cortisol in the pathogenesis of these syndromes. However, to what extent these systems’ abnormalities could be considered as primary or secondary factors causing FM and CFS has yet to be clarified.

© 2015 S. Karger AG, Basel.

 

Source: Romano GF, Tomassi S, Russell A, Mondelli V, Pariante CM. Fibromyalgia and chronic fatigue: the underlying biology and related theoretical issues. Adv Psychosom Med. 2015;34:61-77. doi: 10.1159/000369085. Epub 2015 Mar 30. https://www.ncbi.nlm.nih.gov/pubmed/25832514

 

Attenuation of autoimmune responses to oxidative specific epitopes, but not nitroso-adducts, is associated with a better clinical outcome in Myalgic Encephalomyelitis/chronic fatigue syndrome

Abstract:

OBJECTIVES: There is evidence that inflammatory, oxidative and nitrosative stress (IO&NS) pathways participate in the pathophysiology of a subgroup of patients with Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS). Increased IgM-related autoimmune responses to oxidative specific epitopes (OSEs), including malondialdehyde (MDA), oleic acid and phosphatidyl inositol (Pi), and nitroso-(NO)-adducts, including NO-tryptophan (NOW), NO-arginine and NO-cysteinyl, are frequently observed in ME/CFS. Autoimmune responses in ME/CFS may be driven by increased bacterial translocation as measured by IgM and IgA responses to LPS of gram negative bacteria.

METHODS: The aim of this study is to examine whether IgM responses to OSEs and NO-adducts are related to a better outcome as measured by the Fibromyalgia and Fatigue Rating Scale (FF). 76 ME/CFS patients with initially abnormal autoimmune responses were treated with care-as-usual, including nutraceuticals with anti-IO&NS effects (NAIOS), such as L-carnitine, coenzyme Q10, taurine + lipoic acid, with or without curcumine + quercitine or N-acetyl-cysteine, zinc + glutamine.

RESULTS: We found that use of these NAIOS was associated with highly significant reductions in initially increased IgM-mediated autoimmune responses to OSEs and NO-adducts. A greater reduction in autoimmune responses to OSEs during intake of these NAIOS was associated with a lower FF score. Reductions in IgM responses to oleic acid, MDA and Pi, but not in any of the NO-adducts, were associated with reductions in severity of illness. These associations remained significant after adjusting for possible effects of increased bacterial translocation (leaky gut).

CONCLUSIONS: Our results show that autoimmune responses to OSEs are involved in the pathophysiology of ME/CFS and that these pathways are a new drug target in a subgroup of ME/CFS patients. Although hypernitrosylation and nitrosative stress play a role in ME/CFS, reductions in these pathways are not associated with lowered severity of illness. Randomized controlled trials with NAIOS should be carried out in the subgroup of ME/CFS patients with initially increased autoimmune responses to OSEs.

 

Source: Maes M, Leunis JC. Attenuation of autoimmune responses to oxidative specific epitopes, but not nitroso-adducts, is associated with a better clinical outcome in Myalgic Encephalomyelitis/chronic fatigue syndrome. Neuro Endocrinol Lett. 2014;35(7):577-85. https://www.ncbi.nlm.nih.gov/pubmed/25617880

 

Robuvit® (Quercus robur extract) supplementation in subjects with chronic fatigue syndrome and increased oxidative stress. A pilot registry study.

Abstract:

AIM: The aim of this registry study was to evaluate the effects of supplementation with Robuvit® (French Quercus robur extract) capsules in subjects with Chronic Fatigue Syndrome (CFS) associated with an increased oxidative stress. Robuvit is a wood extract from Quercus robur (Horphag Research) used to improve liver dysfunction and chronic fatigue. After excluding any disease, subjects observed a defined management plan to improve CFS. Signs/symptoms had been present for more than 6 months in association with an increase in oxidative stress (measured as plasma free radicals). Blood tests were within normal values.

METHODS: The registry study included 38 CFS subjects and 42 comparable controls. There were no dropouts in the 4 weeks of follow-up; the subjects were evaluated for a further period of 6 months. The management plan included: improved/increased sleep; reduction/abolition in smoking and alcohol or any other agent that may have affected them; control of diet, increase in dietary proteins; good hydration; rest (1/2-1 h/day) and exercise (at least 30 min/day); planned relaxation time; increased time in open spaces. In the Robuvit® supplementation group 300 mg/day of Robuvit® was used.

RESULTS: Symptoms improved in both groups with a significantly more important improvement in the supplement group (P<0.05). The single items in the Multidimensional Assessment of Fatigue (MAF) questionnaire were statistically better improved (P<0.05) in the supplement group. A parallel improvement in oxidative stress was observed in the supplemented subjects. In the follow up, at 6 months no organic disease was discovered or disease markers found.

CONCLUSION: This preliminary registry indicates that supplementation with Robuvit® improves CFS in otherwise healthy subjects with no presence of clinical disease or risk conditions. The effects of Robuvit® in CFS may be partially mediated by a clear reduction of plasma free radicals and oxidative stress.

 

Source: Belcaro G, Cornelli U, Luzzi R, Ledda A, Cacchio M, Saggino A, Cesarone MR, Dugall M, Feragalli B, Hu S, Pellegrini L, Ippolito E. Robuvit® (Quercus robur extract) supplementation in subjects with chronic fatigue syndrome and increased oxidative stress. A pilot registry study. J Neurosurg Sci. 2015 Jun;59(2):105-17. Epub 2014 Nov 14. https://www.ncbi.nlm.nih.gov/pubmed/25394351

 

A Study of the Protective Effect of Triticum aestivum L. in an Experimental Animal Model of Chronic Fatigue Syndrome

Abstract:

BACKGROUND: Oxidative stress plays a major role in the pathogenesis of chronic fatigue syndrome (CFS). Keeping in view the proven antioxidant activity of Triticum aestivum L., this study has been undertaken to explore the potential therapeutic benefit of this plant in the treatment of CFS.

OBJECTIVE: To study the protective effect of the ethanolic extract of the leaves of Triticum aestivum (EETA) in an experimental mice model of CFS.

MATERIALS AND METHODS: Five groups of albino mice (20-25 g) were selected for the study, with five animals in each group. Group A served as the naïve control and Group B served as the stressed control. Groups C and D received EETA (100 mg/kg and 200 mg/kg b.w.). Group E received imipramine (20 mg/kg b.w.). Except for Group A, mice in each group were forced to swim 6 min each for 7 days to induce a state of chronic fatigue. Duration of immobility was measured on every alternate day. After 7 days, various behavioral tests (mirror chamber and elevated plus maize test for anxiety, open field test for locomotor activity) and biochemical estimations (malondialdehyde [MDA] and catalase activity) in mice brain were performed.

RESULTS: Forced swimming in the stressed group resulted in a significant increase in immobility period, decrease in locomotor activity and elevated anxiety level. The brain homogenate showed significantly increased MDA and decreased catalase levels. The extract-treated groups showed significantly (P < 0.05) improved locomotor activity, decreased anxiety level, elevated catalase levels and reduction of MDA.

CONCLUSION: The study confirms the protective effects of EETA in CFS.

 

Source: Borah M, Sarma P, Das S. A Study of the Protective Effect of Triticum aestivum L. in an Experimental Animal Model of Chronic Fatigue Syndrome. Pharmacognosy Res. 2014 Oct;6(4):285-91. Doi: 10.4103/0974-8490.138251. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166815/ (Full article)

 

Altered immune response to exercise in patients with chronic fatigue syndrome/myalgic encephalomyelitis: a systematic literature review

Abstract:

An increasing number of studies have examined how the immune system of patients with Chronic Fatigue Syndrome (CFS), or myalgic encephalomyelitis, responds to exercise. The objective of the present study was to systematically review the scientific literature addressing exercise-induced immunological changes in CFS patients compared to healthy control subjects. A systematic literature search was conducted in the PubMed and Web of science databases using different keyword combinations. We included 23 case control studies that examined whether CFS patients, compared to healthy sedentary controls, have a different immune response to exercise. The included articles were evaluated on their methodological quality.

Compared to the normal response of the immune system to exercise as seen in healthy subjects, patients with CFS have a more pronounced response in the complement system (i.e. C4a split product levels), oxidative stress system (i.e. enhanced oxidative stress combined with a delayed and reduced anti-oxidant response), and an alteration in the immune cells’ gene expression profile (increases in post-exercise interleukin-10 and toll-like receptor 4 gene expression), but not in circulating pro- or anti-inflammatory cytokines. Many of these immune changes relate to post-exertional malaise in CFS, a major characteristic of the illness. The literature review provides level B evidence for an altered immune response to exercise in patients with CFS.

 

Source: Nijs J, Nees A, Paul L, De Kooning M, Ickmans K, Meeus M, Van Oosterwijck J. Altered immune response to exercise in patients with chronic fatigue syndrome/myalgic encephalomyelitis: a systematic literature review. Exerc Immunol Rev. 2014;20:94-116. http://www.medizin.uni-tuebingen.de/transfusionsmedizin/institut/eir/content/2014/94/article.pdf (Full article)

 

Oxidative and Nitrosative Stress and Immune-Inflammatory Pathways in Patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS)

Abstract:

Myalgic Encephalomyelitis (ME) / Chronic Fatigue Syndrome (CFS) has been classified as a disease of the central nervous system by the WHO since 1969. Many patients carrying this diagnosis do demonstrate an almost bewildering array of biological abnormalities particularly the presence of oxidative and nitrosative stress (O&NS) and a chronically activated innate immune system.

The proposal made herein is that once generated chronically activated O&NS and immune-inflammatory pathways conspire to generate a multitude of self-sustaining and self-amplifying pathological processes which are associated with the onset of ME/CFS. Sources of continuous activation of O&NS and immune-inflammatory pathways in ME/CFS are chronic, intermittent and opportunistic infections, bacterial translocation, autoimmune responses, mitochondrial dysfunctions, activation of the Toll-Like Receptor Radical Cycle, and decreased antioxidant levels.

Consequences of chronically activated O&NS and immune-inflammatory pathways in ME/CFS are brain disorders, including neuroinflammation and brain hypometabolism / hypoperfusion, toxic effects of nitric oxide and peroxynitrite, lipid peroxidation and oxidative damage to DNA, secondary autoimmune responses directed against disrupted lipid membrane components and proteins, mitochondrial dysfunctions with a disruption of energy metabolism (e.g. compromised ATP production) and dysfunctional intracellular signaling pathways. The interplay between all of these factors leads to self-amplifying feed forward loops causing a chronic state of activated O&NS, immune-inflammatory and autoimmune pathways which may sustain the disease.

 

Source: Morris G, Maes M. Oxidative and Nitrosative Stress and Immune-Inflammatory Pathways in Patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Curr Neuropharmacol. 2014 Mar;12(2):168-85. doi: 10.2174/1570159X11666131120224653. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964747/ (Full article)

 

Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs) is classified by the World Health Organization as a disorder of the central nervous system. ME/cfs is an neuro-immune disorder accompanied by chronic low-grade inflammation, increased levels of oxidative and nitrosative stress (O&NS), O&NS-mediated damage to fatty acids, DNA and proteins, autoimmune reactions directed against neoantigens and brain disorders. Mitochondrial dysfunctions have been found in ME/cfs, e.g. lowered ATP production, impaired oxidative phosphorylation and mitochondrial damage.

This paper reviews the pathways that may explain mitochondrial dysfunctions in ME/cfs. Increased levels of pro-inflammatory cytokines, such as interleukin-1 and tumor necrosis factor-α, and elastase, and increased O&NS may inhibit mitochondrial respiration, decrease the activities of the electron transport chain and mitochondrial membrane potential, increase mitochondrial membrane permeability, interfere with ATP production and cause mitochondrial shutdown. The activated O&NS pathways may additionally lead to damage of mitochondrial DNA and membranes thus decreasing membrane fluidity. Lowered levels of antioxidants, zinc and coenzyme Q10, and ω3 polyunsaturated fatty acids in ME/cfs may further aggravate the activated immuno-inflammatory and O&NS pathways.

Therefore, it may be concluded that immuno-inflammatory and O&NS pathways may play a role in the mitochondrial dysfunctions and consequently the bioenergetic abnormalities seen in patients with ME/cfs. Defects in ATP production and the electron transport complex, in turn, are associated with an elevated production of superoxide and hydrogen peroxide in mitochondria creating adaptive and synergistic damage.

It is argued that mitochondrial dysfunctions, e.g. lowered ATP production, may play a role in the onset of ME/cfs symptoms, e.g. fatigue and post exertional malaise, and may explain in part the central metabolic abnormalities observed in ME/cfs, e.g. glucose hypometabolism and cerebral hypoperfusion.

 

Source: Morris G, Maes M. Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis. 2014 Mar;29(1):19-36. doi: 10.1007/s11011-013-9435-x. Epub 2013 Sep 10.https://www.ncbi.nlm.nih.gov/pubmed/24557875