Orthostatic Intolerance and Chronotropic Incompetence in Patients With Myalgic Encephalomyelitis or Chronic Fatigue Syndrome

Abstract:

Background: Orthostatic intolerance markedly affects the day-to-day activities of patients with myalgic encephalomyelitis (ME) or chronic fatigue syndrome. Chronotropic incompetence (CI), defined as an impaired chronotropic response or reduced increases in heart rate during exercise and resulting in lower exercise capacity, may also be observed during orthostasis in patients with ME.

Methods and Results: In this study, the recordings of 101 adult patients with ME (36 men, 65 women; mean [±SD] age 37±12 years) who underwent conventional active 10-min standing tests at least 3 times to determine the presence of CI were analyzed. Recordings were selected for 13 patients who experienced tests both with and without exhibiting postural orthostatic tachycardia syndrome (POTS; an increase in heart rate of ≥30 beats/min or an actual heart rate of ≥120 beats/min) while also both successfully completing and failing to complete 10-min standing on different occasions. Subjects in whom failure without POTS was observed in any test(s) while success was associated with POTS on other occasions were considered positive for CI during orthostasis. Of the 13 patients, 12 (92%) were CI positive, 5 (38%) of whom exclusively failed the tests without experiencing POTS.

Conclusions: Some patients with ME were CI positive during standing tests, suggesting impaired sympathetic activation. The presence of POTS appears to be essential for maintaining orthostasis in these patients.

Source: Kunihisa Miwa. Orthostatic Intolerance and Chronotropic Incompetence in Patients With Myalgic Encephalomyelitis or Chronic Fatigue Syndrome. Circulation Reports, Article ID CR-22-0114. https://www.jstage.jst.go.jp/article/circrep/advpub/0/advpub_CR-22-0114/_html/-char/en (Full text)

Orthostatic Intolerance after COVID-19 Infection: Is Disturbed Microcirculation of the Vasa Vasorum of Capacitance Vessels the Primary Defect?

Abstract:

Following COVID-19 infection, a substantial proportion of patients suffer from persistent symptoms known as Long COVID. Among the main symptoms are fatigue, cognitive dysfunction, muscle weakness and orthostatic intolerance (OI). These symptoms also occur in myalgic encephalomyelitis/chronic fatigue (ME/CFS).
OI is highly prevalent in ME/CFS and develops early during or after acute COVID-19 infection. The causes for OI are unknown and autonomic dysfunction is hypothetically assumed to be the primary cause, presumably as a consequence of neuroinflammation. Here, we propose an alternative, primary vascular mechanism as the underlying cause of OI in Long COVID.
We assume that the capacitance vessel system, which plays a key role in physiologic orthostatic regulation, becomes dysfunctional due to a disturbance of the microvessels and the vasa vasorum, which supply large parts of the wall of those large vessels. We assume that the known microcirculatory disturbance found after COVID-19 infection, resulting from endothelial dysfunction, microthrombus formation and rheological disturbances of blood cells (altered deformability ), also affects the vasa vasorum to impair the function of the capacitance vessels.
In an attempt to compensate for the vascular deficit, sympathetic activity overshoots to further worsen OI, resulting in a vicious circle that maintains OI. The resulting orthostatic stress, in turn, plays a key role in autonomic dysfunction and the pathophysiology of ME/CFS.
Source: Wirth KJ, Löhn M. Orthostatic Intolerance after COVID-19 Infection: Is Disturbed Microcirculation of the Vasa Vasorum of Capacitance Vessels the Primary Defect? Medicina. 2022; 58(12):1807. https://doi.org/10.3390/medicina58121807 https://www.mdpi.com/1648-9144/58/12/1807 (Full text)

Orthostatic Intolerance in Long-Haul COVID after SARS-CoV-2: A Case-Control Comparison with Post-EBV and Insidious-Onset Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients

Background: As complaints of long-haul COVID patients are similar to those of ME/CFS patients and as orthostatic intolerance (OI) plays an important role in the COVID infection symptomatology, we compared 14 long-haul COVID patients with 14 ME/CFS patients with a post-viral Ebstein-Barr (EBV) onset and 14 ME/CFS patients with an insidious onset of the disease.
Methods: In all patients, OI analysis by history taking and OI assessed during a tilt test, as well as cerebral blood flow measurements by extracranial Doppler, and cardiac index measurements by suprasternal Doppler during the tilt test were obtained in all patients.
Results: Except for disease duration no differences were found in clinical characteristics. The prevalence of POTS was higher in the long-haul patients (100%) than in post-EBV (43%) and in insidious-onset (50%) patients (p = 0.0002). No differences between the three groups were present in the prevalence of OI, heart rate and blood pressure changes, changes in cerebral blood flow or in cardiac index during the tilt test.
Conclusion: OI symptomatology and objective abnormalities of OI (abnormal cerebral blood flow and cardiac index reduction during tilt testing) are comparable to those in ME/CFS patients. It indicates that long-haul COVID is essentially the same disease as ME/CFS.
Source: van Campen CMC, Visser FC. Orthostatic Intolerance in Long-Haul COVID after SARS-CoV-2: A Case-Control Comparison with Post-EBV and Insidious-Onset Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Healthcare. 2022; 10(10):2058. https://doi.org/10.3390/healthcare10102058 (Full text)

Orthostatic intolerance and neurocognitive impairment in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Objectives: The Institute of Medicine (IOM 2015. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness. Washington: The National Academies Press) suggested new criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), which requires an endorsement of either neurocognitive impairment or orthostatic intolerance (OI) in addition to other core symptoms. While some research supports the inclusion of OI as a core symptom, others argue that overlap with neurocognitive impairment does not justify the either/or option. The current study assessed methods of operationalizing OI using items from the DePaul Symptom Questionnaire (DSQ-1 and -2) as a part of the IOM criteria. Evaluating the relationship between OI and neurocognitive symptoms may lead to a better understanding of diagnostic criteria for ME/CFS.

Methods: Two-hundred and forty-two participants completed the DSQ. We examined how many participants met the IOM criteria while endorsing different frequencies and severities of various OI symptoms.

Results: Neurocognitive impairment was reported by 93.4% of respondents. OI without concurrent neurocognitive symptoms only allowed for an additional 1.7–4.5% of participants to meet IOM criteria.

Conclusions: Neurocognitive symptoms and OI overlap in ME/CFS, and our results do not support the IOM’s inclusion of neurocognitive impairment and OI as interchangeable symptoms. Furthermore, our findings highlight the need for a uniform method of defining and measuring OI via self-report in order to accurately study OI as a symptom of ME/CFS.

Source: Gaglio, Caroline L., Islam, Mohammed F., Cotler, Joseph and Jason, Leonard A.. “Orthostatic intolerance and neurocognitive impairment in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)” Epidemiologic Methods, vol. 11, no. 1, 2022, pp. 20210033. https://doi.org/10.1515/em-2021-0033

Post-Acute Effect of SARS-CoV-2 Infection on the Cardiac Autonomic Function

Abstract:

Background: Recent studies reported a long-lasting effect of COVID-19 infection that extends beyond the active disease and disrupts various body systems besides the respiratory system. The current study aims to investigate the post-acute effect of SARS-CoV-2 infection on cardiovascular autonomic activity, reactivity and sensitivity in patients who had the infection at least 3 months before.

Methods: This was a comparative cross-sectional observational study. Fifty-nine subjects were allocated into two groups, controls (n=31), who had no history of positive COVID-19 infection, and the post-COVID patients (n=28) who were recruited 3 to 8 months after testing positive for SARS-CoV-2 by reverse transcription polymerase chain reaction (RT-PCR). Baseline cardiovascular autonomic activity was evaluated through recording of baseline heart rate variability (HRV), autonomic reactivity was determined through standard cardiovascular autonomic reflex tests (CART), and cardiac autonomic sensitivity was assessed through cardiac baroreceptor sensitivity (cBRS).

Results: Higher incidence of orthostatic hypotension was observed in post-COVID patients compared to controls (39.3% and 3.2%, respectively, p <0.001). Additionally, significantly reduced handgrip test, and heart rate response to head-up tilt was illustrated in the post-COVID group (p <0.001). About 85.7% of post-COVID participants had at least one abnormal cardiovascular reflex test (CART) compared to the control group (p <0.001). Although HRV parameters (TP, LF, HF, SDRR, RMSSD, pRR50), and the cBRS were numerically lower in the post-COVID-19 group, this did not reach the level of significance.

Conclusion: The results of the present study are suggestive of altered cardiovascular reactivity in post-acute COVID patients and demand further investigation and longer term follow up.

Network autonomic analysis of post-acute sequelae of COVID-19 and postural tachycardia syndrome

Abstract:

Background: The autonomic nervous system (ANS) is a complex network where sympathetic and parasympathetic domains interact inside and outside of the network. Correlation-based network analysis (NA) is a novel approach enabling the quantification of these interactions. The aim of this study is to assess the applicability of NA to assess relationships between autonomic, sensory, respiratory, cerebrovascular, and inflammatory markers on post-acute sequela of COVID-19 (PASC) and postural tachycardia syndrome (POTS).

Methods: In this retrospective study, datasets from PASC (n = 15), POTS (n = 15), and matched controls (n = 11) were analyzed. Networks were constructed from surveys (autonomic and sensory), autonomic tests (deep breathing, Valsalva maneuver, tilt, and sudomotor test) results using heart rate, blood pressure, cerebral blood flow velocity (CBFv), capnography, skin biopsies for assessment of small fiber neuropathy (SFN), and various inflammatory markers. Networks were characterized by clusters and centrality metrics.

Results: Standard analysis showed widespread abnormalities including reduced orthostatic CBFv in 100%/88% (PASC/POTS), SFN 77%/88%, mild-to-moderate dysautonomia 100%/100%, hypocapnia 87%/100%, and elevated inflammatory markers. NA showed different signatures for both disorders with centrality metrics of vascular and inflammatory variables playing prominent roles in differentiating PASC from POTS.

Conclusions: NA is suitable for a relationship analysis between autonomic and nonautonomic components. Our preliminary analyses indicate that NA can expand the value of autonomic testing and provide new insight into the functioning of the ANS and related systems in complex disease processes such as PASC and POTS.

Source: Novak P, Giannetti MP, Weller E, Hamilton MJ, Mukerji SS, Alabsi HS, Systrom D, Marciano SP, Felsenstein D, Mullally WJ, Pilgrim DM, Castells M. Network autonomic analysis of post-acute sequelae of COVID-19 and postural tachycardia syndrome. Neurol Sci. 2022 Sep 28:1–12. doi: 10.1007/s10072-022-06423-y. Epub ahead of print. PMID: 36169757; PMCID: PMC9517969. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9517969/ (Full text)

Orthostatic intolerance as a potential contributor to prolonged fatigue and inconsistent performance in elite swimmers

Abstract:

Background: Athletic underperformance is characterized by fatigue and an inability to sustain a consistent exercise workload. We describe five elite swimmers with prolonged fatigue and athletic underperformance. Based on our work in myalgic encephalomyelitis /chronic fatigue syndrome, we focused on orthostatic intolerance as a possible contributor to symptoms.

Methods: Participants were referred for evaluation of fatigue and underperformance to the Chronic Fatigue Clinic at the Johns Hopkins Children’s Center. All patients were evaluated for overtraining syndrome, as well as for features commonly seen in myalgic encephalomyelitis/chronic fatigue syndrome. The latter included joint hypermobility, orthostatic intolerance, and non-IgE mediated milk protein intolerance. Orthostatic intolerance was tested by performing a ten-minute passive standing test or a head-up tilt table test.

Results: Orthostatic testing provoked fatigue and other symptoms in all five swimmers, two of whom met heart rate criteria for postural tachycardia syndrome. Treatment was individualized, primarily consisting of an increased intake of sodium chloride and fluids to address orthostasis. All patients experienced a relatively prompt improvement in fatigue and other orthostatic symptoms and were able to either return to their expected level of performance or improve their practice consistency.

Conclusions: Orthostatic intolerance was an easily measured and treatable contributor to athletic underperformance in the five elite swimmers we describe. We suggest that passive standing tests or formal tilt table tests be incorporated into the clinical evaluation of athletes with fatigue and underperformance as well as into scientific studies of this topic. Recognition and treatment of orthostatic intolerance provides a new avenue for improving outcomes in underperforming athletes.

Source: Petracek LS, Eastin EF, Rowe IR, Rowe PC. Orthostatic intolerance as a potential contributor to prolonged fatigue and inconsistent performance in elite swimmers. BMC Sports Sci Med Rehabil. 2022 Jul 23;14(1):139. doi: 10.1186/s13102-022-00529-8. PMID: 35870963. https://bmcsportsscimedrehabil.biomedcentral.com/articles/10.1186/s13102-022-00529-8 (Full text)

Orthostatic Challenge Causes Distinctive Symptomatic, Hemodynamic and Cognitive Responses in Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Background: Some patients with acute COVID-19 are left with persistent, debilitating fatigue, cognitive impairment (“brain fog”), orthostatic intolerance (OI) and other symptoms (“Long COVID”). Many of the symptoms are like those of other post-infectious fatigue syndromes and may meet criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Common diagnostic laboratory tests are often unrevealing.

Methods: We evaluated whether a simple, standardized, office-based test of OI, the 10-min NASA Lean Test (NLT), would aggravate symptoms and produce objective hemodynamic and cognitive abnormalities, the latter being evaluated by a simple smart phone-based app.

Participants: People with Long COVID (N = 42), ME/CFS (N = 26) and healthy control subjects (N = 20) were studied just before, during, immediately after, 2 and 7 days following completion of the NLT.

Results: The NLT provoked a worsening of symptoms in the two patient groups but not in healthy control subjects, and the severity of all symptoms was similar and significantly worse in the two patient groups than in the control subjects (p < 0.001). In the two patient groups, particularly those with Long COVID, the NLT provoked a marked and progressive narrowing in the pulse pressure. All three cognitive measures of reaction time worsened in the two patient groups immediately following the NLT, compared to the healthy control subjects, particularly in the Procedural Reaction Time (p < 0.01).

Conclusions: A test of orthostatic stress easily performed in an office setting reveals different symptomatic, hemodynamic and cognitive abnormalities in people with Long COVID and ME/CFS, compared to healthy control subjects. Thus, an orthostatic challenge easily performed in an office setting, and the use of a smart phone app to assess cognition, can provide objective confirmation of the orthostatic intolerance and brain fog reported by patients with Long COVID and ME/CFS.

Source: Vernon SD, Funk S, Bateman L, Stoddard GJ, Hammer S, Sullivan K, Bell J, Abbaszadeh S, Lipkin WI, Komaroff AL. Orthostatic Challenge Causes Distinctive Symptomatic, Hemodynamic and Cognitive Responses in Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Med (Lausanne). 2022 Jun 23;9:917019. doi: 10.3389/fmed.2022.917019. PMID: 35847821; PMCID: PMC9285104. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285104/ (Full text)

Comparison of the Degree of Deconditioning in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Patients with and without Orthostatic Intolerance

Abstract:

Background: Orthostatic intolerance (OI) is a core finding in individuals with myalgic encephalomyelitis /chronic fatigue syndrome (ME/CFS). Deconditioning is often proposed as an important determinant for OI. Deconditioning can be objectively classified using the predicted peak oxygen consumption (%VO2 peak) values as derived from cardiopulmonary exercise testing (CPET) and OI can be objectively quantified using cerebral blood flow (CBF) changes during tilt testing. Therefore, if deconditioning contributes to OI, a correlation between peak VO2 and the %CBF reduction is expected.

Methods and results: 18 healthy controls (HC) and 122 ME/CFS patients without hypotension or tachycardia on tilt testing were studied. Deconditioning was classified as follows: %VOpeak ≥85%= no deconditioning, %VO2 peak 65-85%= mild deconditioning, %VO2 peak<65%= severe deconditioning. HC had higher %VO2 peak compared to ME/CFS patients (p<0.0001). ME/CFS patients had significantly larger CBF reduction than HC (p<0.0001). No relation between the degree of deconditioning by the %VO2 peak and the %CBF reduction in ME/CFS patients was found. Moreover, we separately analyzed ME/CFS patients without an abnormal CBF reduction. Despite equal CBF reductions compared to HC and large differences between these patients and the patients with an abnormal CBF reduction, cardiac index (CI) changes (measured by suprasternal Doppler) were significantly less compared to ME/CFS patients with an abnormal CBF reduction (p<0.0001) but larger than in HC (p=0.004). Despite these different hemodynamic findings, %VO2 values were not different between the two patient groups, argumenting again against the causative role of hemodynamic abnormalities in deconditioning.

Conclusion: In ME/CFS patients without hypotension or tachycardia there is no relation between the %VO2 peak during CPET and the %CBF and %CI reduction during tilt testing, whether or not patients have an abnormal CBF reduction during tilt testing. It suggests again that deconditioning does not play an important role in OI.

Source: VAN CAMPEN, C (Linda) M.C.; VISSER, Frans C.. Comparison of the Degree of Deconditioning in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Patients with and without Orthostatic Intolerance. Medical Research Archives, [S.l.], v. 10, n. 6, june 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2858>. Date accessed: 17 july 2022. doi: https://doi.org/10.18103/mra.v10i6.2858.

Autonomic function testing in long-COVID syndrome patients with orthostatic intolerance

Abstract:

The association between dysautonomia and long-COVID syndrome has gained considerable interest. This study retrospectively characterized the findings of autonomic reflex screen (ARS) in long-COVID patients presenting with orthostatic intolerance (OI). Fourteen patients were identified. All patients had normal cardiovagal function and 2 patients had abnormal sudomotor function. The head-up tilt table (HUTT) was significantly abnormal in 3 patients showing postural orthostatic tachycardia syndrome (POTS). CASS ranged from 0 to 2. The most common clinical scenario was symptoms of orthostatic intolerance without demonstrable HUTT orthostatic tachycardia or orthostatic hypotension (OH) (n = 8, 57 %). In our case series, most long-COVID patients presenting to our laboratory with OI had no significant HUTT abnormalities; only 3 patients met the criteria for POTS.

Source: Eldokla AM, Ali ST. Autonomic function testing in long-COVID syndrome patients with orthostatic intolerance. Auton Neurosci. 2022 Jun 2;241:102997. doi: 10.1016/j.autneu.2022.102997. Epub ahead of print. PMID: 35679657. https://pubmed.ncbi.nlm.nih.gov/35679657/