Hypothesis: Astrocyte dysregulation of sympathetic nervous system causes metabolic dysfunction in subset of Long COVID and ME/CFS patients

Abstract:

An overactive sympathetic nervous system (SNS) may cause one subtype of Long COVID. People who are genetically at risk for noradrenergic nerve problems may develop an overactive SNS after an infection. Alternatively, genetic or virus-induced dysregulation of astrocytes could lead to overactivation of the SNS. An overactive SNS could disrupt regulation of immune cells, energy metabolism, sleep homeostasis, respiratory rate, gastrointestinal function, and systemic and cerebral blood pressure, causing fatigue and cognitive dysfunction.

Hypothesis: Long COVID refers to symptoms that continue for more than four weeks after onset of acute COVID-19 illness. This umbrella term includes a wide variety of symptoms and presentations. Long COVID patients may have different types of biological dysfunction, meaning that there may be distinct subtypes of Long COVID. One possible subtype is sympathetic nervous system (SNS) over-activation. This subtype may exist in both Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)1.

Underlying mechanisms of the SNS overactivation subtype: Theoretically, patients with this subtype already have a genetic dysregulation of neuronal norepinephrine (NE) release/clearance or noradrenergic receptor sensitivity2. This latent genetic dysfunction of NE signaling may not cause significant problems unless there is a trigger that causes excess NE release.

As NE affects immune cell signaling, this could result in an over-activation or prolonged activation of the immune system in response to infection with SARS-CoV-2, the virus that causes COVID-193 . This subtype could explain why ME/CFS is often triggered by a virus or brain injury, as these occurrences can trigger noradrenergic signaling3.

Possible mechanisms for the SNS overactivation subtype include viral reservoirs, antibody reaction, and dysregulation of noradrenergic receptor expression. In Long COVID patients, viral antigens and reservoirs that remain in the body long after the initial infection may keep the overactive immune system in an inflammatory state4,5. A healthy person may not react to these SARS-CoV-2 reservoirs, as their functional immune cells should develop immune tolerance. Another possibility is that the immune system is reacting to SARS-CoV-2 antibodies.

Finally, it is possible that excess extracellular NE could keep the SNS and noradrenergic systems in the brain stuck in an overactive state. A prolonged period of increased levels of extracellular NE could lead to dysregulation of noradrenergic receptor expression. The excess extracellular NE may be due to a prolonged release of excess NE during the initial infection, or a failure of the negative feedback mechanisms that should reduce NE release.

Symptoms of an overactive SNS: An overactive SNS explains many of the symptoms found in Long COVID patients, such as IBS/gastrointestinal symptoms6, heart palpitations7, and sleep disturbance8. Additionally, in orthostatic intolerance, which is common in Long COVID and ME/CFS, the release of NE causes pronounced tachycardia. This rapid heart rate may cause palpitations, breathlessness, and chest pain.

Dysfunctional energy metabolism causes fatigue and cognitive dysfunction: An important piece of the puzzle is to explain how a dysregulated SNS could lead to chronic fatigue and brain fog (cognitive dysfunction). The most likely explanation is a dysregulation of metabolic function. There are many ways excess NE could affect metabolism, including enhancing aerobic glycolysis and depleting glycogen stores.

Source: Carnac, T. (2023). Hypothesis: Astrocyte dysregulation of sympathetic nervous system causes metabolic dysfunction in subset of Long COVID and ME/CFS patients. Patient-Generated Hypotheses Journal for Long COVID & Associated Conditions, Vol. 1, 36-43 https://patientresearchcovid19.com/hypothesis-astrocyte-dysregulation-of-sympathetic-nervous-system-causes-metabolic-dysfunction-in-subset-of-long-covid-and-me-cfs-patients-pghj-issue1-may2023/ (Full text)

Cognitive functioning in postural orthostatic tachycardia syndrome among different body positions: a prospective pilot study (POTSKog study)

Abstract:

Purpose: Approximately 96% of patients with postural orthostatic tachycardia syndrome (PoTS) report cognitive complaints. We investigated whether cognitive function is impaired during sitting and active standing in 30 patients with PoTS compared with 30 healthy controls (HCs) and whether it will improve with the counter manoeuvre of leg crossing.

Methods: In this prospective pilot study, patients with PoTS were compared to HCs matched for age, sex, and educational level. Baseline data included norepinephrine plasma levels, autonomic testing and baseline cognitive function in a seated position [the Montreal Cognitive Assessment, the Leistungsprüfsystem (LPS) subtests 1 and 2, and the Test of Attentional Performance (TAP)]. Cognitive functioning was examined in a randomized order in supine, upright and upright legs crossed position. The primary outcomes were the cognitive test scores between HCs and patients with PoTS at baseline testing, and among the different body positions.

Results: Patients with PoTS had impaired attention (TAP median reaction time) in the seated position and impaired executive functioning (Stroop) while standing compared with HC. Stroop was influenced by position (supine versus upright versus upright legs crossed) only in the PoTS group. Leg crossing did not result in an improvement in executive function. In patients with PoTS, there was a negative correlation of Stroop with norepinephrine plasma levels while standing.

Conclusion: Compared with HCs, PoTS participants showed impaired cognitive attention and executive function in the upright position that did not improve in the legs crossed position. Data provide further evidence for orthostatic cognitive deterioration in patients with PoTS.

Trial Registration Information: The study was registered at ClinicalTrials.gov (NCT03681080).

Source: Maier, A., Schopen, L., Thiel, J.C. et al. Cognitive functioning in postural orthostatic tachycardia syndrome among different body positions: a prospective pilot study (POTSKog study). Clin Auton Res (2023). https://doi.org/10.1007/s10286-023-00950-0 https://link.springer.com/article/10.1007/s10286-023-00950-0 (Full text)

Associations between clinical symptoms, plasma norepinephrine and deregulated immune gene networks in subgroups of adolescent with Chronic Fatigue Syndrome

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) is one of the most important causes of disability among adolescents while limited knowledge exists on genetic determinants underlying disease pathophysiology.

METHODS: We analyzed deregulated immune-gene modules using Pathifier software on whole blood gene expression data (29 CFS patients, 18 controls). Deconvolution of immune cell subtypes based on gene expression profile was performed using CIBERSORT. Supervised consensus clustering on pathway deregulation score (PDS) was used to define CFS subgroups. Associations between PDS and immune, neuroendocrine/autonomic and clinical markers were examined. The impact of plasma norepinephrine level on clinical markers over time was assessed in a larger cohort (91 patients).

RESULTS: A group of 29 immune-gene sets was shown to differ patients from controls and detect subgroups within CFS. Group 1P (high PDS, low norepinephrine, low naïve CD4+ composition) had strong association with levels of serum C-reactive protein and Transforming Growth Factor-beta. Group 2P (low PDS, high norepinephrine, high naïve CD4+ composition) had strong associations with neuroendocrine/autonomic markers. The corresponding plasma norepinephrine level delineated 91 patients into two subgroups with significant differences in fatigue score.

CONCLUSION: We identified 29 immune-gene sets linked to plasma norepinephrine level that could delineate CFS subgroups. Plasma norepinephrine stratification revealed that lower levels of norepinephrine were associated with higher fatigue. Our data suggests potential involvement of neuro-immune dysregulation and genetic stratification in CFS.

Copyright © 2018. Published by Elsevier Inc.

Source: Nguyen CB, Kumar S, Zucknick M, Kristensen VN, Gjerstad J, Nilsen H, Wyller VB. Associations between clinical symptoms, plasma norepinephrine and deregulated immune gene networks in subgroups of adolescent with Chronic Fatigue Syndrome. Brain Behav Immun. 2018 Nov 9. pii: S0889-1591(18)30796-7. doi: 10.1016/j.bbi.2018.11.008. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/30419269

Norepinephrine and epinephrine responses to physiological and pharmacological stimulation in chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is characterized by fatigue lasting 6 months or longer. CFS has been associated with a disturbed (re-)activity of the autonomic nervous system. However, the sympathetic adrenomedulla (SAM) remains under-examined in CFS.

To investigate SAM reactivity, we implemented a submaximal cycle ergometry (ERGO) and a pharmacological test (Insulin Tolerance Test, ITT) in 21 CFS patients and 20 age-, sex-, and BMI-matched controls. Plasma norepinephrine and epinephrine were collected once before and twice after the tests (+10/+20, and +30 min).

Lower baseline levels and attenuated responses of epinephrine to the ERGO were found in CFS patients compared to controls, while the groups did not differ in their responses to the ITT.

To conclude, we found evidence of altered sympathetic-neural and SAM reactivity in CFS. Exercise stress revealed a subtle catecholaminergic hyporeactivity in CFS patients. It is conceivable that inadequate catecholaminergic responses to physical exertion might contribute to CFS symptoms.

Copyright © 2013 Elsevier B.V. All rights reserved.

 

Source: Strahler J, Fischer S, Nater UM, Ehlert U, Gaab J. Norepinephrine and epinephrine responses to physiological and pharmacological stimulation in chronic fatigue syndrome. Biol Psychol. 2013 Sep;94(1):160-6. doi: 10.1016/j.biopsycho.2013.06.002. Epub 2013 Jun 13. https://www.ncbi.nlm.nih.gov/pubmed/23770415