Deficient GABABergic and glutamatergic excitability in the motor cortex of patients with long-COVID and cognitive impairment

Abstract:

Objective: Attention, working memory and executive processing have been reported to be consistently impaired in Neuro-Long coronavirus disease (COVID). On the hypothesis of abnormal cortical excitability, we investigated the functional state of inhibitory and excitatory cortical regulatory circuits by single “paired-pulse” transcranial magnetic stimulation (ppTMS) and Short-latency Afferent Inhibition (SAI).

Methods: We compared clinical and neurophysiological data of 18 Long COVID patients complaining of persistent cognitive impairment with 16 Healthy control (HC) subjects. Cognitive status was evaluated by means of the Montreal Cognitive Assessment (MoCA) and a neuropsychological evaluation of the executive function domain; fatigue was scored by the Fatigue Severity Scale (FSS). Resting motor threshold (RMT), the amplitude of the motor evoked potential (MEP), Short Intra-cortical Inhibition (SICI), Intra-cortical Facilitation (ICF), Long-interval Intracortical Inhibition (LICI) and Short-afferent inhibition (SAI) were investigated over the motor (M1) cortex.

Results: MoCA corrected scores were significantly different between the two groups (p = 0.023). The majority of the patients’ performed sub-optimally in the neuropsychological assessment of the executive functions. The majority (77.80%) of the patients reported high levels of perceived fatigue in the FSS. RMT, MEPs, SICI and SAI were not significantly different between the two groups. On the other hand, Long COVID patients showed a reduced amount of inhibition in LICI (p = 0.003) and a significant reduction in ICF (p < 0.001).

Conclusions: Neuro-Long COVID patients performing sub-optimally in the executive functions showed a reduction of LICI related to GABAb inhibition and a reduction of ICF related to glutamatergic regulation. No alteration in cholinergic circuits was found.

Significance: These findings can help to better understand the neurophysiological characteristics of Neuro-Long COVID, and in particular, motor cortex regulation in people with “brain fog”.

Source: Manganotti P, Michelutti M, Furlanis G, Deodato M, Buoite Stella A. Deficient GABABergic and glutamatergic excitability in the motor cortex of patients with long-COVID and cognitive impairment. Clin Neurophysiol. 2023 May 10;151:83-91. doi: 10.1016/j.clinph.2023.04.010. Epub ahead of print. PMID: 37210757; PMCID: PMC10170904. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170904/ (Full text)

Immunometabolic rewiring in long COVID patients with chronic headache

Abstract:

Almost 20% of patients with COVID-19 experience long-term effects, known as post-COVID condition or long COVID. Among many lingering neurologic symptoms, chronic headache is the most common. Despite this health concern, the etiology of long COVID headache is still not well characterized. Here, we present a longitudinal multi-omics analysis of blood leukocyte transcriptomics, plasma proteomics and metabolomics of long COVID patients with chronic headache. L

ong COVID patients experienced a state of hyper-inflammation prior to chronic headache onset and maintained persistent inflammatory activation throughout the progression of chronic headache. Metabolomic analysis also revealed augmented arginine and lipid metabolisms, skewing towards a nitric oxide-based pro-inflammation. Furthermore, metabolisms of neurotransmitters including serotonin, dopamine, glutamate, and GABA were markedly dysregulated during the progression of long COVID headache.

Overall, these findings illustrate the immuno-metabolomics landscape of long COVID patients with chronic headache, which may provide insights to potential therapeutic interventions.

Source: Foo SS, Chen W, Jung KL, Azamor T, Choi UY, Zhang P, Comhair SA, Erzurum SC, Jehi L, Jung JU. Immunometabolic rewiring in long COVID patients with chronic headache. bioRxiv [Preprint]. 2023 Mar 6:2023.03.06.531302. doi: 10.1101/2023.03.06.531302. PMID: 36945569; PMCID: PMC10028820. https://www.biorxiv.org/content/10.1101/2023.03.06.531302v1.full (Full text)

Broken Connections: The Evidence for Neuroglial Failure in ME/CFS

Abstract:

In spite of decades of research, the pathobiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is still poorly understood. Several pathomechanisms have been identified, yet, it remains unclear how they are related and which of them may be upstream or downstream.

In this paper, we present a theoretical strategy that may help clarify the causal chain of pathophysiological events in ME/CFS. We propose to focus on the common final histological pathway of ME/CFS and suggest to ask: Which cellular compartment may explain the pathological processes and clinical manifestations observed in ME/CFS? Any functional unit consistently identified through this search may then be a plausible candidate for further exploration.

For this “histological” approach we have compiled a list of 22 undisputed clinical and pathophysiological features of ME/CFS that need to be plausibly and most directly explained by the dysfunctional cellular unit in question. For each feature we have searched the literature for pathophysiological explanations and analyzed if they may point to the same functional cellular unit. Through this search we have identified the CNS neuroglia – microglia and astroglia – as the one functional unit in the human body which may best explain all and any of the clinical and pathological features, dysfunctions and observations described for ME/CFS.

While this points to neuroinflammation as the central hub in ME/CFS, it also points to a novel understanding of the neuroimmune basis of ME/CFS. After all, the neuroglial cells are now understood as the functional matrix of the human brain connectome which operates beyond and above specific brain centers, receptor units or neurotransmitter systems and integrates innate immune functions with CNS regulatory functions pertaining to autonomous regulation, cellular metabolism and the stress response.

Source: Renz-Polster, H. (2021, August 3). Broken Connections: The Evidence for Neuroglial Failure in ME/CFS. https://doi.org/10.31219/osf.io/ef3n4 https://osf.io/ef3n4/ (Full text)

Migraine Is More Than Just Headache: Is the Link to Chronic Fatigue and Mood Disorders Simply Due to Shared Biological Systems?

Abstract:

Migraine is a symptomatically heterogeneous condition, of which headache is just one manifestation. Migraine is a disorder of altered sensory thresholding, with hypersensitivity among sufferers to sensory input. Advances in functional neuroimaging have highlighted that several brain areas are involved even prior to pain onset. Clinically, patients can experience symptoms hours to days prior to migraine pain, which can warn of impending headache. These symptoms can include mood and cognitive change, fatigue, and neck discomfort. Some epidemiological studies have suggested that migraine is associated in a bidirectional fashion with other disorders, such as mood disorders and chronic fatigue, as well as with other pain conditions such as fibromyalgia. This review will focus on the literature surrounding alterations in fatigue, mood, and cognition in particular, in association with migraine, and the suggested links to disorders such as chronic fatigue syndrome and depression.

We hypothesize that migraine should be considered a neural disorder of brain function, in which alterations in aminergic networks integrating the limbic system with the sensory and homeostatic systems occur early and persist after headache resolution and perhaps interictally. The associations with some of these other disorders may allude to the inherent sensory sensitivity of the migraine brain and shared neurobiology and neurotransmitter systems rather than true co-morbidity.

Source: Karsan N, Goadsby PJ. Migraine Is More Than Just Headache: Is the Link to Chronic Fatigue and Mood Disorders Simply Due to Shared Biological Systems? Front Hum Neurosci. 2021 Jun 3;15:646692. doi: 10.3389/fnhum.2021.646692. PMID: 34149377; PMCID: PMC8209296. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209296/ (Full text)

A randomised controlled trial of the monoaminergic stabiliser (-)-OSU6162 in treatment of myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

OBJECTIVE: The monoaminergic stabiliser (-)-OSU6162 has in previous studies shown promising effects on mental fatigue after stroke and traumatic brain injury. This study investigated the safety and effectiveness of (-)-OSU6162 in patients with myalgic encephalomyelitis/chronic fatigue syndrome.

METHODS: A total of 62 patients were randomly assigned to placebo or (-)-OSU6162. Primary outcomes were assessment on the mental fatigue scale (MFS) and the clinical global impression of change (CGI-C) scale. Secondary outcomes were results on the FibroFatigue scale (FF), the Beck Depression Inventory (BDI), the pain visual analogue scale and neuropsychological tests. Assessments were performed at baseline, after 1 and 2 weeks of treatment and at follow-up after 6 weeks.

RESULTS: MFS and CGI-C showed significant improvements for both treatment groups after treatment but not at follow-up; a similar pattern was seen for FF and BDI. However, significant differences between groups could not be demonstrated. On the other hand, correlation analyses showed a significant correlation between (-)-OSU6162 concentration and change in MFS, FF, and BDI score within the concentration interval 0.1-0.7 µM. Exploratory subgroup analyses showed a larger treatment effect with (-)-OSU6162 in improving MFS and FF symptoms in patients on antidepressant therapy compared to those without antidepressant treatment.

CONCLUSION: (-)-OSU6162 was found to be safe and well tolerated. When analysing the entire material (-)-OSU6162 was not found to differ significantly from placebo in alleviating fatigue in ME patients but was superior to placebo in counteracting fatigue in a subgroup of ME patients who received concomitant pharmacological treatment for depression.

Source: Nilsson MKL, Zachrisson O, Gottfries CG, Matousek M, Peilot B, Forsmark S, Schuit RC, Carlsson ML, Kloberg A, Carlsson A. A randomised controlled trial of the monoaminergic stabiliser (-)-OSU6162 in treatment of myalgic encephalomyelitis/chronic fatigue syndrome. Acta Neuropsychiatr. 2017 Dec 7:1-10. doi: 10.1017/neu.2017.35. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/29212562

Chronic fatigue syndrome patients had reduced activity in brain’s ‘reward center’

Chronic fatigue syndrome, a medical disorder characterized by extreme and ongoing fatigue with no other diagnosed cause, remains poorly understood despite decades of scientific study. Although researchers estimate that more than 1 million Americans are affected by this condition, the cause for chronic fatigue syndrome, a definitive way to diagnose it, and even its very existence remain in question. In a new study, researchers have found differing brain responses in people with this condition compared to healthy controls, suggesting an association between a biologic functional response and chronic fatigue syndrome.

The findings show that patients with chronic fatigue syndrome have decreased activation of an area of the brain known as the basal ganglia in response to reward. Additionally, the extent of this lowered activation was associated with each patient’s measured level of fatigue. The basal ganglia are at the base of the brain and are associated with a variety of functions, including motor activity and motivation. Diseases affecting basal ganglia are often associated with fatigue. These results shed more light on this mysterious condition, information that researchers hope may eventually lead to better treatments for chronic fatigue syndrome.

The study was conducted by Elizabeth R. Unger, James F. Jones, and Hao Tian of the Centers for Disease Control and Prevention (CDC), Andrew H. Miller and Daniel F. Drake of Emory University School of Medicine, and Giuseppe Pagnoni of the University of Modena and Reggio Emilia. An abstract of their study entitled, “Decreased Basal Ganglia Activation in Chronic Fatigue Syndrome Subjects is Associated with Increased Fatigue,” will be discussed at the meeting Experimental Biology 2012, being held April 21-25 at the San Diego Convention Center. The abstract is sponsored by the American Society for Investigative Pathology (ASIP), one of six scientific societies sponsoring the conference which last year attracted some 14,000 attendees.

More Fatigue, Less Activation

Dr. Unger says that she and her colleagues became curious about the role of the basal ganglia after previous studies by collaborators at Emory University showed that patients treated with interferon alpha, a common treatment for chronic hepatitis C and several other conditions, often experienced extreme fatigue. Further investigation into this phenomenon showed that basal ganglia activity decreased in patients who received this immune therapy. Since the fatigue induced by interferon alpha shares many characteristics with chronic fatigue syndrome, Unger and her colleagues decided to investigate whether the basal ganglia were also affected in this disorder.

The researchers recruited 18 patients with chronic fatigue syndrome, as well as 41 healthy volunteers with no symptoms of CFS. Each study participant underwent functional magnetic resonance imaging, a brain scan technique that measures activity in various parts of the brain by blood flow, while they played a simple card game meant to stimulate feelings of reward. The participants were each told that they’d win a small amount of money if they correctly guessed whether a preselected card was red or black. After making their choice, they were presented with the card while researchers measured blood flow to the basal ganglia during winning and losing hands.

The researchers showed that patients with chronic fatigue syndrome experienced significantly less change in basal ganglia blood flow between winning and losing than the healthy volunteers. When the researchers looked at scores for the Multidimensional Fatigue Inventory, a survey often used to document fatigue for chronic fatigue syndrome and various other conditions, they also found that the extent of a patient’s fatigue was tightly tied with the change in brain activity between winning and losing. Those with the most fatigue had the smallest change.

Results Suggest Role of Inflammation

Unger notes that the findings add to our understanding of biological factors that may play a role in chronic fatigue syndrome. “Many patients with chronic fatigue syndrome encounter a lot of skepticism about their illness,” she says. “They have difficulty getting their friends, colleagues, coworkers, and even some physicians to understand their illness. These results provide another clue into the biology of chronic fatigue syndrome.”

The study also suggests some areas of further research that could help scientists develop treatments for this condition in the future, she adds. Since the basal ganglia use the chemical dopamine as their major neurotransmitter, dopamine metabolism may play an important role in understanding and changing the course of this illness. Similarly, the difference in basal ganglia activation between the patients and healthy volunteers may be caused by inflammation, a factor now recognized as pivotal in a variety of conditions, ranging from heart disease to cancer.

Estimates from the CDC suggest that annual medical costs associated with chronic fatigue syndrome total about $14 billion in the United States. Annual losses to productivity because of lost work time range between $9 and $37 billion, with costs to individual households ranging between $8,000 and $20,000 per year.

 

Source: Federation of American Societies for Experimental Biology (FASEB). (2012, April 24). Chronic fatigue syndrome patients had reduced activity in brain’s ‘reward center’. ScienceDaily. Retrieved March 4, 2017 from https://www.sciencedaily.com/releases/2012/04/120424142109.htm

 

Association of monoamine-synthesizing genes with the depression tendency and personality in chronic fatigue syndrome patients

Abstract:

AIMS: Tyrosine hydroxylase (TH) and GTP cyclohydrolase I (GCH) are the rate-limiting enzymes for the biosynthesis of catecholamines and tetrahydrobiopterin (BH4), respectively. Since catecholamines and BH4 are thought to be involved in the pathophysiology of CFS, we explored the genetic factors that influence CFS development and examined the possible association between the SNPs of the TH and GCH genes and the various characteristics of CFS patients.

MAIN METHODS: After drawing venous blood from CFS patients and controls, genomic DNA was then extracted from whole blood in accordance with standard procedures. Digestion patterns of the PCR products were used for genotyping the SNPs of GCH (rs841; C+243T) and TH (rs10770141; C-824T). We also performed questionnaires consisting of fatigue-scale and temperament and character inventory scale (TCI) to CFS patients.

KEY FINDINGS: Our results demonstrated that the allele differences for the GCH and TH SNPs were not associated with CFS patients. We did find that the GCH gene with the C+243T polymorphism affected harm avoidance, while the TH gene with the C-824T polymorphism affected persistence in the CFS patients. The concept of persistence has been linked to specific personality, such as perfectionism, in CFS.

SIGNIFICANCE: Our results suggest that the biosynthetic pathways of the monoamine neurotransmitters that are mediated by TH and GCH might be associated with the CFS clinical findings, because persistence is one of the typical personality traits observed in CFS and patients with major depressive disorder exhibit a higher harm avoidance score.

Copyright © 2012 Elsevier Inc. All rights reserved.

 

Source: Fukuda S, Horiguchi M, Yamaguti K, Nakatomi Y, Kuratsune H, Ichinose H, Watanabe Y. Association of monoamine-synthesizing genes with the depression tendency and personality in chronic fatigue syndrome patients. Life Sci. 2013 Feb 27;92(3):183-6. doi: 10.1016/j.lfs.2012.11.016. Epub 2012 Dec 13. https://www.ncbi.nlm.nih.gov/pubmed/23246742

 

Higher heart rate and reduced heart rate variability persist during sleep in chronic fatigue syndrome: a population-based study

Abstract:

Autonomic nervous system (ANS) dysfunction has been suggested in patients with chronic fatigue syndrome (CFS). In this study, we sought to determine whether increased heart rate (HR) and reduced heart rate variability (HRV) parameters observed in CFS patients during wakefulness persist during sleep. To this end, we compared heart rate (HR) and HRV as indicators of ANS function in CFS subjects and non-fatigued (NF) controls in a population-based, case-control study.

Thirty subjects with CFS and 38 NF controls, matched for age-, sex- and body mass index, were eligible for analysis. Main outcome measures included mean RR interval (RRI), HR, and HRV parameters derived from overnight ECG. Plasma aldosterone and norepinephrine levels, medicines with cardiovascular effect, and reported physical activity were examined as covariates. General Linear Models were used to assess significance of associations and adjust for potential confounders.

Compared to controls, CFS cases had significantly higher mean HR (71.4 vs 64.8 bpm), with a shorter mean RRI [840.4 (85.3) vs 925.4(97.8) ms] (p<0.0004, each), and reduced low frequency (LF), very low frequency (VLF), and total power (TP) of HRV (p<0.02, all). CFS cases had significantly lower plasma aldosterone (p<0.05), and tended to have higher plasma norepinephrine levels. HR correlated weakly with plasma norepinephrine (r=0.23, p=0.05) and moderately with vitality and fatigue scores (r=-0.49 and 0.46, respectively, p<0.0001). Limitation in moderate physical activity was strongly associated with increased HR and decreased HRV. Nevertheless, among 42 subjects with similar physical activity limitations, CFS cases still had higher HR (71.8 bpm) than respective controls (64.9 bpm), p=0.023, suggesting that reduced physical activity could not fully explain CFS-associated differences in HR and HRV. After adjusting for potential confounders case-control differences in HR and TP remained significant (p<0.05).

CONCLUSION: The presence of increased HR and reduced HRV in CFS during sleep coupled with higher norepinephrine levels and lower plasma aldosterone suggest a state of sympathetic ANS predominance and neuroendocrine alterations. Future research on the underlying pathophysiologic mechanisms of the association is needed.

 

Source: Boneva RS, Decker MJ, Maloney EM, Lin JM, Jones JF, Helgason HG, Heim CM, Rye DB, Reeves WC. Higher heart rate and reduced heart rate variability persist during sleep in chronic fatigue syndrome: a population-based study. Auton Neurosci. 2007 Dec 30;137(1-2):94-101. Epub 2007 Sep 12. https://www.ncbi.nlm.nih.gov/pubmed/17851136

 

Chronic fatigue syndrome and neurotransmitters

Abstract:

Chronic fatigue syndrome (CFS) is an idiopathic illness characterized by persistent fatigue, which could be caused by a variety of etiologic factors including viral infection, abnormal production of cytokines and abnormal acylcarnitine metabolism. Recent studies suggest that CFS is closely associated with attenuation of central synaptic transmission mediated by neurotransmitters such as serotonin and glutamate. Attenuation of serotonin neurotransmission can be caused by increased expression of serotonin transporter, which results either from viral infection and subsequent production of interferon–alpha or from abnormal promoter for serotonin transporter gene. Other neurotransmitter systems may be also involved in CFS mediated by abnormal acylcarnitine metabolism and autoantibodies for neurotransmitter receptors. In this review, we focus recent data on CFS in terms of neurotransmitters.

 

Source: Miwa S, Takikawa O. Chronic fatigue syndrome and neurotransmitters. Nihon Rinsho. 2007 Jun;65(6):1005-10. [Article in Japanese] https://www.ncbi.nlm.nih.gov/pubmed/17561689

 

beta-Alanine and gamma-aminobutyric acid in chronic fatigue syndrome

Abstract:

BACKGROUND: Due to the occurrence of sleep disturbances and fatigue in chronic fatigue syndrome (CFS), an investigation was performed to examine if there is an abnormal excretion of gamma-aminobutyric acid (GABA) and/or its structural analogue beta-alanine in the urine from CFS patients. Both GABA and beta-alanine are inhibitory neurotransmitters in the mammalian central nervous system.

METHODS: The 24 h urine excretion of GABA and beta-alanine was determined by isotope dilution gas chromatography mass spectrometry in 33 CFS patients and 43 healthy controls. The degree of symptoms in both patients and controls was measured by grading of three typical CFS symptoms using a Visual Analogue Scale.

RESULTS: Men had a significantly higher excretion of both beta-alanine and GABA than women. Comparing CFS patients with healthy controls showed no significant difference in excretion of neither beta-alanine nor GABA. No correlation was found between the excretion of beta-alanine or GABA and any of the three characteristic CFS symptoms measured. However, two female and two male CFS patients excreted considerably higher amounts of beta-alanine in their 24 h urine samples than control subjects.

CONCLUSIONS: Increased excretion of beta-alanine was found in a subgroup of CFS patients, indicating that there may be a link between CFS and beta-alanine in some CFS patients.

 

Source: Hannestad U, Theodorsson E, Evengård B. beta-Alanine and gamma-aminobutyric acid in chronic fatigue syndrome. Clin Chim Acta. 2007 Feb;376(1-2):23-9. Epub 2006 Jul 14. https://www.ncbi.nlm.nih.gov/pubmed/16934791