Reduced Parasympathetic Reactivation during Recovery from Exercise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Although autonomic nervous system (ANS) dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) has been proposed, conflicting evidence makes it difficult to draw firm conclusions regarding ANS activity at rest in ME/CFS patients. Although severe exercise intolerance is one of the core features of ME/CFS, little attempts have been made to study ANS responses to physical exercise. Therefore, impairments in ANS activation at rest and following exercise were examined using a case-control study in 20 ME/CFS patients and 20 healthy people.

Different autonomous variables, including cardiac, respiratory, and electrodermal responses were assessed at rest and following an acute exercise bout. At rest, parameters in the time-domain represented normal autonomic function in ME/CFS, while frequency-domain parameters indicated the possible presence of diminished (para)sympathetic activation. Reduced parasympathetic reactivation during recovery from exercise was observed in ME/CFS.

This is the first study showing reduced parasympathetic reactivation during recovery from physical exercise in ME/CFS. Delayed HR recovery and/or a reduced HRV as seen in ME/CFS have been associated with poor disease prognosis, high risk for adverse cardiac events, and morbidity in other pathologies, implying that future studies should examine whether this is also the case in ME/CFS and how to safely improve HR recovery in this population.

Source: Van Oosterwijck J, Marusic U, De Wandele I, Meeus M, Paul L, Lambrecht L, Moorkens G, Danneels L, Nijs J. Reduced Parasympathetic Reactivation during Recovery from Exercise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Clin Med. 2021 Sep 30;10(19):4527. doi: 10.3390/jcm10194527. PMID: 34640544; PMCID: PMC8509376. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509376/ (Full text)

The Role of Autonomic Function in Exercise-induced Endogenous Analgesia: A Case-control Study in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Healthy People

Abstract:

Background: Patients with myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) are unable to activate brain-orchestrated endogenous analgesia (or descending inhibition) in response to exercise. This physiological impairment is currently regarded as one factor explaining post-exertional malaise in these patients. Autonomic dysfunction is also a feature of ME/CFS.

Objectives: This study aims to examine the role of the autonomic nervous system in exercise-induced analgesia in healthy people and those with ME/CFS, by studying the recovery of autonomic parameters following aerobic exercise and the relation to changes in self-reported pain intensity.

Study design: A controlled experimental study.

Setting: The study was conducted at the Human Physiology lab of a University.

Methods: Twenty women with ME/CFS- and 20 healthy, sedentary controls performed a submaximal bicycle exercise test known as the Aerobic Power Index with continuous cardiorespiratory monitoring. Before and after the exercise, measures of autonomic function (i.e., heart rate variability, blood pressure, and respiration rate) were performed continuously for 10 minutes and self-reported pain levels were registered. The relation between autonomous parameters and self-reported pain parameters was examined using correlation analysis.

Results: Some relationships of moderate strength between autonomic and pain measures were found. The change (post-exercise minus pre-exercise score) in pain severity was correlated (r = .580, P = .007) with the change in diastolic blood pressure in the healthy group. In the ME/CFS group, positive correlations between the changes in pain severity and low frequency (r = .552, P = .014), and between the changes in bodily pain and diastolic blood pressure (r = .472, P = .036), were seen. In addition, in ME/CHFS the change in headache severity was inversely correlated (r = -.480, P = .038) with the change in high frequency heart rate variability.

Limitations: Based on the cross-sectional design of the study, no firm conclusions can be drawn on the causality of the relations.

Conclusions: Reduced parasympathetic reactivation during recovery from exercise is associated with the dysfunctional exercise-induced analgesia in ME/CFS. Poor recovery of diastolic blood pressure in response to exercise, with blood pressure remaining elevated, is associated with reductions of pain following exercise in ME/CFS, suggesting a role for the arterial baroreceptors in explaining dysfunctional exercise-induced analgesia in ME/CFS patients.

Source: Oosterwijck JV, Marusic U, De Wandele I, Paul L, Meeus M, Moorkens G, Lambrecht L, Danneels L, Nijs J. The Role of Autonomic Function in Exercise-induced Endogenous Analgesia: A Case-control Study in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Healthy People. Pain Physician. 2017 Mar;20(3):E389-E399. PMID: 28339438. https://www.painphysicianjournal.com/linkout?issn=&vol=20&page=E389 (Full text)

Reduced Parasympathetic Reactivation during Recovery from Exercise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Although autonomic nervous system (ANS) dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) has been proposed, conflicting evidence makes it difficult to draw firm conclusions regarding ANS activity at rest in ME/CFS patients. Although severe exercise intolerance is one of the core features of ME/CFS, little attempts have been made to study ANS responses to physical exercise. Therefore, impairments in ANS activation at rest and following exercise were examined using a case-control study in 20 ME/CFS patients and 20 healthy people.

Different autonomous variables, including cardiac, respiratory, and electrodermal responses were assessed at rest and following an acute exercise bout. At rest, parameters in the time-domain represented normal autonomic function in ME/CFS, while frequency-domain parameters indicated the possible presence of diminished (para)sympathetic activation. Reduced parasympathetic reactivation during recovery from exercise was observed in ME/CFS.

This is the first study showing reduced parasympathetic reactivation during recovery from physical exercise in ME/CFS. Delayed HR recovery and/or a reduced HRV as seen in ME/CFS have been associated with poor disease prognosis, high risk for adverse cardiac events, and morbidity in other pathologies, implying that future studies should examine whether this is also the case in ME/CFS and how to safely improve HR recovery in this population.

Source: Van Oosterwijck J, Marusic U, De Wandele I, Meeus M, Paul L, Lambrecht L, Moorkens G, Danneels L, Nijs J. Reduced Parasympathetic Reactivation during Recovery from Exercise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Clin Med. 2021 Sep 30;10(19):4527. doi: 10.3390/jcm10194527. PMID: 34640544. https://pubmed.ncbi.nlm.nih.gov/34640544/

The Relationship Between Childhood Trauma and the Response to Group Cognitive-Behavioural Therapy for Chronic Fatigue Syndrome

Abstract:

Objective: To examine the relationship between childhood trauma and the response to group cognitive-behavioural therapy (GCBT) for chronic fatigue syndrome (CFS).

Methods: A single cohort study conducted in an outpatient university referral center for CFS including a well-documented sample of adult patients meeting the CDC criteria for CFS and having received 9 to 12 months of GCBT. A mixed effect model was adopted to examine the impact of childhood trauma on the treatment response in general and over time. The main outcome measures were changes in fatigue, as assessed with the Checklist Individual Strength (total score), and physical functioning, as gauged with the Short Form 36 Health Survey subscale, with the scales being completed at baseline, immediately after treatment completion and after 1 year.

Results: We included 105 patients with CFS. Childhood trauma was not significantly associated with the response to GCBT over time on level of fatigue or physical functioning.

Conclusion: Childhood trauma does not seem to have an effect on the treatment response to dedicated GCBT for CFS sufferers over time. Therefore, in the allocation of patients to this kind of treatment, a history of childhood trauma should not be seen as prohibitive.

Source: De Venter M, Illegems J, Van Royen R, Sabbe BGC, Moorkens G, Van Den Eede F. The Relationship Between Childhood Trauma and the Response to Group Cognitive-Behavioural Therapy for Chronic Fatigue Syndrome. Front Psychiatry. 2020;11:536. Published 2020 Jun 12. doi:10.3389/fpsyt.2020.00536 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304305/ (Full text)

Antioxidant status and lipoprotein peroxidation in chronic fatigue syndrome

Abstract:

The aetiology and pathogenesis of the Chronic Fatigue Syndrome (CFS) are still largely unresolved. Accompanying metabolic disorders such as selective n-6 fatty acid depletion suggest that oxidative stress and more specifically lipid peroxidation might play a role in its pathogenesis.

In order to investigate this hypothesis, oxidant-antioxidant status and its impact on lipoprotein peroxidation in vitro was examined in 61 patients with unexplained fatigue lasting more than 1 month. They were subdivided into 2 groups: group CFS+ (33 subjects) fulfilled the 1988 Center of Disease Control criteria for CFS and group CFS- did not but was similar as regards age, sex distribution and clinical characteristics.

Antioxidant status was similar in the 2 groups except for lower serum transferrin in the CFS + (mean (95 % CI) 2.41 (2.28-2.54) versus 2.73 (2.54-2.92) g/L in the CFS-, p = 0.009) and higher lipoprotein peroxidation in vitro: 6630 (5949-7312) versus 5581 (4852-6310) nmol MDA/mg LDL and VLDL cholesterol x minutes, p = 0.035). CFS intensified the influence of LDL cholesterol (p = 0.012) and of transferrin (p = 0.045) on peroxidation in vitro, suggesting additional pro-oxidant effects.

These results indicate that patients with CFS have increased susceptibility of LDL and VLDL to copper-induced peroxidation and that this is related both to their lower levels of serum transferrin and to other unidentified pro-oxidising effects of CFS.

 

Source: Manuel y Keenoy B, Moorkens G, Vertommen J, De Leeuw I. Antioxidant status and lipoprotein peroxidation in chronic fatigue syndrome. Life Sci. 2001 Mar 16;68(17):2037-49. http://www.ncbi.nlm.nih.gov/pubmed/11388705

 

Effect of growth hormone treatment in patients with chronic fatigue syndrome: a preliminary study

Abstract:

The efficacy of growth hormone (GH) therapy was evaluated in patients with chronic fatigue syndrome (CFS) who had peak serum GH levels below 10 microg/l during stage-controlled sleep. Twenty patients (7 men, 13 women; age range, 30-60 years) with CFS were randomized to receive placebo or GH therapy, 6.7 microg/kg/day (0.02 IU/kg/day), for 12 weeks.

Following this double-blind treatment period, the 17 patients remaining in the study were given GH therapy at the above dose for an open period of 9 months. Mean (+/- SD) serum levels of insulin-like growth factor I (IGF-I) increased during GH treatment, from 173 +/- 46 microg/I to 296 +/- 89 microg/l (P < 0.001); IGF-I SDS values increased from -0.45 +/- 1.14 to +1.43 +/- 1.09 (P < 0.001).

Fat-free mass and total body water were significantly increased after 12 months of treatment. Although quality of life, as assessed using two different questionnaires, did not improve significantly during GH treatment, four patients were able to resume work after a long period of sick leave.

 

Source: Moorkens G, Wynants H, Abs R. Effect of growth hormone treatment in patients with chronic fatigue syndrome: a preliminary study. Growth Horm IGF Res. 1998 Apr;8 Suppl B:131-3. http://www.ncbi.nlm.nih.gov/pubmed/10990148

 

Secretion of growth hormone in patients with chronic fatigue syndrome

Abstract:

Decreased serum levels of insulin-like growth factor I (IGF-I) are common in patients with fibromyalgia, which is frequently associated withchronic fatigue syndrome (CFS). Twenty patients with CFS (7 men, 13 women; age range, 30-60 years) and age- and sex-matched controls were tested for peak GH responses to insulin-induced hypoglycaemia and arginine administration. Nocturnal secretion of GH and serum levels of IGF-I were also measured. Serum IGF-I SDS (+/- SD) was significantly lower in patients with CFS than in controls (SDS, -0.39 +/- 1.07 vs 0.33 +/- 0.84; P = 0.02). Patients with CFS also tended to have reduced nocturnal secretion of GH (area under the curve, 32.4 +/- 18.3 vs 62.7 +/- 43.7 microg/l/15 minutes; P= 0.06), but peak GH responses to insulin-induced hypoglycaemia and arginine administration did not differ significantly between the two groups. It is not clear whether the tendency for impaired spontaneous nocturnal GH secretion in patients with CFS is a cause or an effect of the condition.

 

Source: Berwaerts J, Moorkens G, Abs R. Secretion of growth hormone in patients with chronic fatigue syndrome. Growth Horm IGF Res. 1998 Apr;8 Suppl B:127-9. http://www.ncbi.nlm.nih.gov/pubmed/10990147

 

Characterization of pituitary function with emphasis on GH secretion in the chronic fatigue syndrome

Abstract:

OBJECTIVE: Previous studies have revealed that hormonal disturbances may accompany the chronic fatigue syndrome (CFS). Changes in the secretion of the pituitary-adrenal axis have been demonstrated, as well as abnormalities in the GH-IGF-I axis. However, data have not always been well characterized and were sometimes conflicting. The small number of CFS patients investigated in earlier studies may have played a role in the interpretation of the results.

SUBJECTS AND DESIGN: Hormonal testing was performed in 73 nonobese CFS patients and nonobese 21 age-and gender-matched healthy controls. We investigated GH, ACTH and cortisol responses to insulin-induced hypoglycaemia. In a subgroup of patients arginine and clonidine stimulation for GH was also performed. Nocturnal secretion of GH, ACTH and cortisol were determined. Serum levels of IGF-I, prolactin, TSH, and free thyroxine were also measured. Visceral fat mass was assessed by CT scanning.

RESULTS: GH response to insulin induced hypoglycaemia assessed by peak value (17.0 +/- 13.1 microg/l vs. 22. 1 +/- 9.8 microg/l; P = 0.01) and by AUC (450.0 +/- 361.3 microg/l vs. 672.3 +/- 393.0 microg/l; P = 0.002) was significantly decreased in CFS patients vs. controls. Nocturnal GH secretion assessed by GH peak value (5.4 +/- 3.7 vs. 9.0 +/- 5.1 microg/l; P = 0.44) and by AUC (34.4 +/- 20.2 vs. 67.4 +/- 43.1; P = 0.045) was also significantly impaired in CFS patients. Arginine and clonidine administration showed no differences in GH secretion between CFS patients and controls. In the CFS group, GH peak values were significantly higher after ITT than after arginine (P = 0.017) or clonidine (P = 0.001). No differences in serum IGF-I levels were found between CFS patients and controls. Except for a significantly lower nocturnal cortisol peak value, no differences were found in ACTH and cortisol secretion between CFS patients and controls. Significantly higher serum prolactin levels (7.4 +/- 4.7 microg/l vs. 4.4 +/- 1.3 microg/l; P = 0.004) and significantly higher serum TSH levels (1.6 +/- 1.0 mU/l vs. 1.0 +/- 0.4 mU/l; P = 0.011) were found in CFS patients. Serum free thyroxine was comparable in both groups. Visceral fat mass was significantly higher in CFS patients (86.6 +/- 34.9 cm2 vs. 51.5 +/- 15.7 cm2; P < 0.001).

CONCLUSIONS: We observed a significant impairment of GH response during insulin-induced hypoglycaemia and a low nocturnal GH secretion in CFS patients. These changes did, however, not lead to different concentrations in serum IGF-I. The clinical expression of this inadequate GH secretion can thus be questioned, although the alteration in body composition may be related to this relative GH deficiency. Significantly increased prolactin and TSH levels were found when compared to controls. These findings give support to the hypothesis of a decreased dopaminergic tone in CFS. Further investigations are required in order to identify specific adaptations within the neurotransmitter system in CFS and to determine the clinical importance of the impaired GH homeostasis.

 

Source: Moorkens G, Berwaerts J, Wynants H, Abs R. Characterization of pituitary function with emphasis on GH secretion in the chronic fatigue syndrome. Clin Endocrinol (Oxf). 2000 Jul;53(1):99-106.http://www.ncbi.nlm.nih.gov/pubmed/10931086

 

Magnesium status and parameters of the oxidant-antioxidant balance in patients with chronic fatigue: effects of supplementation with magnesium

Abstract:

OBJECTIVE: Magnesium deficiency and oxidative stress have both been identified as pathogenic factors in aging and in several age-related diseases. The link between these two factors is unclear in humans although, in experimental animals, severe Mg deficiency has been shown to lead to increased oxidative stress.

METHODS: The relationship between Mg body stores, dietary intakes and supplements on the one hand and parameters of the oxidant-antioxidant balance on the other was investigated in human subjects.

RESULTS: The study population consisted of 93 patients with unexplained chronic fatigue (median age 38 years, 25% male, 16% smokers and 54% with Chronic Fatigue Syndrome (CFS). Mg deficient patients (47%) had lower total antioxidant capacity in plasma (p=0.007) which was related to serum albumin. Mg deficient patients whose Mg body stores did not improve after oral supplementation with Mg (10 mg/kg/day) had persistently lower blood glutathione levels (p=0.003). In vitro production of thiobarbituric acid reactive substances (TBARS) by non-HDL lipoproteins incubated with copper was related to serum cholesterol (p<0.001) but not to Mg or antioxidants and did not improve after Mg supplementation. In contrast, velocity of formation of fluorescent products of peroxidation (slope) correlated with serum vitamin E (p<0.001), which was, in turn, related to Mg dietary intakes. Both slope and serum vitamin E improved after Mg supplementation (p<0.001).

CONCLUSIONS: These results show that the lower antioxidant capacity found in moderate Mg deficiency was not due to a deficit in Mg dietary intakes and was not accompanied by increased lipid susceptibility to in vitro peroxidation. Nevertheless, Mg supplementation was followed by an improvement in Mg body stores, in serum vitamin E and its interrelated stage of lipid peroxidation.

 

Source: Manuel y Keenoy B, Moorkens G, Vertommen J, Noe M, Nève J, De Leeuw I. Magnesium status and parameters of the oxidant-antioxidant balance in patients with chronic fatigue: effects of supplementation with magnesium. J Am Coll Nutr. 2000 Jun;19(3):374-82. http://www.ncbi.nlm.nih.gov/pubmed/10872900