An understanding of the immune dysfunction in susceptible people who develop the post-viral fatigue syndromes Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID

Abstract:

Viral infection in most people results in a transient immune/inflammatory response resulting in elimination of the virus and recovery where the immune system returns to that of the pre-infectious state. In susceptible people by contrast there is a transition from an acute immune response to a chronic state that can lead to an ongoing lifelong complex post-viral illness, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. This susceptibility is proposed to be genetic or be primed by prior health history. Complex abnormalities occur in immune cell functions, immune cell metabolism and energy production, and in cytokine immune modulator regulation. The immune system of the brain/central nervous system becomes activated leading to dysfunction in regulation of body physiology and the onset of many neurological symptoms.

A dysfunctional immune system is core to the development of the post-viral condition as shown with diverse strategies of immune profiling.  Many studies have shown changes in numbers and activity of immune cells of different phenotypes and their metabolism. Immune regulating cytokines show complex altered patterns and vary with the stage of the disease, and there are elements of associated autoimmunity.  These complex changes are accompanied by an altered molecular homeostasis with immune cell transcripts and proteins no longer produced in a tightly regulated manner, reflected in the instability of the epigenetic code that controls gene expression.

Potential key elements of the altered immune function in this disease needing further exploration are changes to the gut-brain-immune axis as a result of changes in the microbiome of the gut, and viral reactivation from latent elements of the triggering virus or from a prior viral infection. Long COVID, an Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-like illness, is the post-viral condition that has arisen in large numbers solely from the pandemic virus Severe Acute Respiratory Syndrome Coronovirus-2.

With over 760 million cases worldwide, an estimated ~100 million cases of Long COVID have occurred within a short period. This now provides an unprecedented opportunity to understand the progression of these post-viral diseases, and to progress from a research phase mainly documenting the immune changes to considering potential immunotherapies that might improve the overall symptom profile of affected patients, and provide them with a better quality of life.

Source: WALKER, Max O.M. et al. An understanding of the immune dysfunction in susceptible people who develop the post-viral fatigue syndromes Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID. Medical Research Archives, [S.l.], v. 11, n. 7.1, july 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/4083>. Date accessed: 15 july 2023. doi: https://doi.org/10.18103/mra.v11i7.1.4083. https://esmed.org/MRA/mra/article/view/4083/99193547075 (Full text as PDF file)

Detrimental effects of COVID-19 in the brain and therapeutic options for long COVID: The role of Epstein–Barr virus and the gut–brain axis

Abstract:

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in a serious public health burden worldwide. In addition to respiratory, heart, and gastrointestinal symptoms, patients infected with SARS-CoV-2 experience a number of persistent neurological and psychiatric symptoms, known as long COVID or “brain fog”. Studies of autopsy samples from patients who died from COVID-19 detected SARS-CoV-2 in the brain. Furthermore, increasing evidence shows that Epstein–Barr virus (EBV) reactivation after SARS-CoV-2 infection might play a role in long COVID symptoms.

Moreover, alterations in the microbiome after SARS-CoV-2 infection might contribute to acute and long COVID symptoms. In this article, the author reviews the detrimental effects of COVID-19 on the brain, and the biological mechanisms (e.g., EBV reactivation, and changes in the gut, nasal, oral, or lung microbiomes) underlying long COVID.

In addition, the author discusses potential therapeutic approaches based on the gut–brain axis, including plant-based diet, probiotics and prebiotics, fecal microbiota transplantation, and vagus nerve stimulation, and sigma-1 receptor agonist fluvoxamine.

Source: Hashimoto, K. Detrimental effects of COVID-19 in the brain and therapeutic options for long COVID: The role of Epstein–Barr virus and the gut–brain axis. Mol Psychiatry (2023). https://doi.org/10.1038/s41380-023-02161-5 https://www.nature.com/articles/s41380-023-02161-5 (Full text)

MTHFR and LC, CFS, POTS, MCAS, SIBO, EDS: Methylating the Alphabet

Abstract:

Long Covid (LC), Chronic Fatigue Syndrome (CFS), Postural Orthostatic Tachycardia Syndrome (POTS), Mast Cell Activation Syndrome (MCAS), Small Intestine Bacterial Overgrowth (SIBO), and Ehlers-Danlos Syndrome (EDS) are all loosely connected, some poorly defined, some with overlapping symptoms.

The female preponderance, the prominence of fatigue and chronic inflammation, and methylenetetrahydrofolate reductase (MTHFR) abnormalities may connect them all. Indeed differential methylation may lie at the root. Two – EDS and MTHFR – are genetic. But epigenetic factors may ultimately determine their phenotypic expression.

Oxidative stress, overloaded mitochondria, an antioxidant and nutrient shortfall, and suboptimal gut microbiome appear to be the primary determinants. A deep dive into the folate and methionine cycles is undertaken in an attempt to connect these syndromes.

The active forms of vitamin D and vitamins B2,3,6,9,12 are shown to be biochemically integral to optimal methylation and control of the epigenome. Their status largely determines the symptoms of abnormal MTHFR in all its phenotypes. The wider implications for aging, cancer, cardiovascular disease, neurodegenerative disease, and autoimmune disease are briefly explored.

Source: Chambers P. MTHFR and LC, CFS, POTS, MCAS, SIBO, EDS: Methylating the Alphabet. Preprint from 30 Jun 2023. https://www.qeios.com/read/ZPYS4F (Full text)

Oligosaccharides as Potential Regulators of Gut Microbiota and Intestinal Health in Post-COVID-19 Management

Abstract:

The COVID-19 pandemic has had a profound impact worldwide, resulting in long-term health effects for many individuals. Recently, as more and more people recover from COVID-19, there is an increasing need to identify effective management strategies for post-COVID-19 syndrome, which may include diarrhea, fatigue, and chronic inflammation. Oligosaccharides derived from natural resources have been shown to have prebiotic effects, and emerging evidence suggests that they may also have immunomodulatory and anti-inflammatory effects, which could be particularly relevant in mitigating the long-term effects of COVID-19.

In this review, we explore the potential of oligosaccharides as regulators of gut microbiota and intestinal health in post-COVID-19 management. We discuss the complex interactions between the gut microbiota, their functional metabolites, such as short-chain fatty acids, and the immune system, highlighting the potential of oligosaccharides to improve gut health and manage post-COVID-19 syndrome. Furthermore, we review evidence of gut microbiota with angiotensin-converting enzyme 2 expression for alleviating post-COVID-19 syndrome.

Therefore, oligosaccharides offer a safe, natural, and effective approach to potentially improving gut microbiota, intestinal health, and overall health outcomes in post-COVID-19 management.

Source: Cheong KL, Chen S, Teng B, Veeraperumal S, Zhong S, Tan K. Oligosaccharides as Potential Regulators of Gut Microbiota and Intestinal Health in Post-COVID-19 Management. Pharmaceuticals (Basel). 2023 Jun 9;16(6):860. doi: 10.3390/ph16060860. PMID: 37375807; PMCID: PMC10301634. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301634/ (Full text)

Microbiome and intestinal pathophysiology in post-acute sequelae of COVID-19

Abstract:

Long COVID, also known for post-acute sequelae of COVID-19, describes the people who have the signs and symptoms that continue or develop after the acute COVID-19 phase. Long COVID patients suffer from an inflammation or host responses towards the virus approximately 4 weeks after initial infection with the SARS CoV-2 virus and continue for an uncharacterized duration.

Anyone infected with COVID-19 before could experience long-COVID conditions, including the patients who were infected with SARS CoV-2 virus confirmed by tests and those who never knew they had an infection early. People with long COVID may experience health problems from different types and combinations of symptoms over time, such as fatigue, dyspnea, cognitive impairments, and gastrointestinal (GI) symptoms (e.g., nausea, vomiting, diarrhea, decreased or loss of appetite, abdominal pain, and dysgeusia). The critical role of the microbiome in these GI symptoms and long COVID were reported in clinical patients and experimental models.

Here, we provide an overall view of the critical role of the GI tract and microbiome in the development of long COVID, including the clinical GI symptoms in patients, dysbiosis, viral-microbiome interactions, barrier function, and inflammatory bowel disease patients with long COVID. We highlight the potential mechanisms and possible treatment based on GI health and microbiome. Finally, we discuss challenges and future direction in the long COVID clinic and research.

Source: Zhang J, Zhang Y, Xia Y, Sun J. Microbiome and intestinal pathophysiology in post-acute sequelae of COVID-19. Genes Dis. 2023 Jun 19. doi: 10.1016/j.gendis.2023.03.034. Epub ahead of print. PMID: 37362775; PMCID: PMC10278891. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278891/ (Full text)

Comprehensive profiling of the human intestinal DNA virome and prediction of disease-associated bacterial hosts in severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling disorder of unknown etiology with severely affected patients being house- and/or bedbound. A historical association with chronic virus infection and subsequent recent reports correlating intestinal microbial dysbiosis with disease pathology prompted us to analyze the intestinal virome in a small cohort of severely-affected ME/CFS patients and same household healthy controls (SHHC).

Datasets from whole metagenomic sequencing (WMS) and sequencing of virus-like particles (VLP)-enriched metagenomes from the same fecal sample yielded diverse, high-quality vOTUs with high read coverage and high genome completeness. The core intestinal virome was largely composed of tailed phages in the class Caudoviricetes with no significant differences in alpha diversity between ME/CFS and SHHC groups. However, the WMS dataset had a higher Shannon measure than the VLP dataset (p < 0.0001), with VLP- and WMS-derived sequences indicating differential abundances within several viral families and different viral compositions in beta diversity.

This confirms that combining different isolation methodologies identifies a greater diversity of viruses including extracellular phages and integrated prophages. DNA viromes and bacteriomes from ME/CFS and SHHC groups were comparable with no differences in any alpha or beta diversity measures. One vOTU derived from the VLP-derived dataset was assigned to ssDNA human virus smacovirus 1. Using an in-silico approach to predict cohort-based bacterial hosts, we identified members of the Anaerotruncus genus interacting with unique viruses present in ME/CFS microbiomes; this may contribute to the GI microbial dysbiosis described in ME/CFS patients.

Source: Shen-Yuan HsiehGeorge M SavvaAndrea TelatinSumeet K TiwariMohammad A TariqFiona NewberryKatharine A SetonCatherine BoothAmolak S BansalTom WilemanEvelien AndriaenssensSimon R Carding. Comprehensive profiling of the human intestinal DNA virome and prediction of disease-associated bacterial hosts in severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS).

Causal Effects between Gut Microbiome and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Two-Sample Mendelian Randomization Study

Abstract:

Background: Evidence from previous studies have implicated an important association between gut microbiota (GM) and Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS), but whether there is a definite causal relationship between GM and ME/CFS has not been elucidated.

Method: This study obtained instrumental variables of 211 GM taxa from the Genome Wide Association Study (GWAS), and mendelian randomization (MR) study was carried out to assess the effect of gut microbiota on ME/CFS risk from UK Biobank GWAS (2076 ME/CFS cases and 460857 controls). Inverse variance weighted (IVW) was the primary method to analyze causality in this study, and a series of sensitivity analyses was performed to validate the robustness of the results.

The inverse variance weighted (IVW) method indicated that genus Paraprevotella (OR:1.001, 95%CI:1.000-1.003, p-value<0.05) and Ruminococca-ceae_UCG_014(OR 1.003, 95% CI 1.000 to 1.005, p-value < 0.05) were positively associated with ME/CFS risk. Results from the weighted median method supported genus Paraprevotella (OR 1.003, 95% CI 1.000 to 1.005, p-value < 0.05) as a risk factor for ME/CFS.

Conclusions: This study reveals a causal relationship between genus.paraprevotella, genus.Ruminococcaceae_UCG_014 and ME/CFS, and our findings provide novel insights for further elucidating the developmental mechanisms mediated by the gut microbiota of ME/CFS.

Source: Gang He, Yu Cao, Wangzi Xu and Houzhao Wang. Causal Effects between Gut Microbiome and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Two-Sample Mendelian Randomization Study. Front. Microbiol. Volume 14 – 2023 | doi: 10.3389/fmicb.2023.1190894 https://www.frontiersin.org/articles/10.3389/fmicb.2023.1190894/abstract

Investigating antibody reactivity to the intestinal microbiome in severe myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystemic disease of unknown aetiology that is characterised by disabling chronic fatigue and involves both the immune and gastrointestinal (GI) systems. Patients display alterations in GI microbiome with a significant proportion experiencing GI discomfort and pain and elevated blood biomarkers for altered intestinal permeability compared with healthy individuals.

To investigate a possible GI origin of ME/CFS we designed a feasibility study to test the hypothesis that ME/CFS pathogenesis is a consequence of increased intestinal permeability that results in microbial translocation and a breakdown in immune tolerance leading to generation of antibodies reactive to indigenous intestinal microbes. Secretory IgA and serum IgG levels and reactivity to intestinal microbes were assessed in five pairs of severe ME/CFS patients and matched same-household healthy controls. For profiling serum IgG we developed IgG-Seq which combines flow-cytometry based bacterial cell sorting and metagenomics to detect mucosal IgG reactivity to the microbiome.

We uncovered evidence for immune dysfunction in severe ME/CFS patients that was characterised by reduced capacity and reactivity of serum IgG to stool microbes, irrespective of their source. This study provides the rationale for additional studies in larger cohorts of ME/CFS patients to further explore immune-microbiome interactions.

Source: Katharine A. Seton, Marianne Defernez, Andrea Telatin, Sumeet K. Tiwari, George M. Savva, Antonietta Hayhoe, Alistair Noble, Ana Carvalho, Steve James, Amolak Bansal, Thomas Wileman, Simon R. Carding. Investigating antibody reactivity to the intestinal microbiome in severe myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). medRxiv 2023.05.21.23290299; doi: https://doi.org/10.1101/2023.05.21.23290299 https://www.medrxiv.org/content/10.1101/2023.05.21.23290299v1.full-text (Full text)

Randomized, double-blinded, placebo-controlled pilot study: Efficacy of faecal microbiota transplantation on chronic fatigue syndrome

Abstract:

Background: Chronic fatigue syndrome (CFS) is a disabling illness of unknown aetiology. Disruption of gut microbiota may play a role in several neurological disorders. In this study, the effect of faecal microbiota transplantation (FMT) on fatigue severity and health-related quality of life (HRQOL) in patients with CFS was evaluated

Methods: Randomized, placebo-controlled pilot trial. Patients and researchers were blinded to treatment assignment. 11 patients with CFS (10 female and 1 male, mean age 42.2 years and mean duration of CFS 6.3 years) were randomly assigned to receive either FMT from a universal donor (n = 5) or autologous FMT (n = 6) via colonoscopy. Patients’ HRQOL was assessed by using visual analog scale (VAS) and self-reporting questionnaires Modified Fatigue Impact Scale (MFIS), 15D and EQ-5D-3L. Patients’ HRQOL was evaluated at baseline, and 1 and 6 months after the FMT.

Results: The baseline VAS scores in the FMT and placebo groups were 62.4 and 76.0 (p = 0.29). 1-month scores were 60.0 and 73.7 and 6-months scores 72.8 and 69.5, respectively. Total MFIS scores in the FMT and placebo groups were 59.6 and 61.0 at the baseline (p = 0.80), 53.5 and 62.0 at 1 month and 58.6 and 56.2 at 6 months. Compared to the baseline scores, differences at 1 and 6 months were statistically insignificant both in VAS and in MFIS. The 15D and EQ-5D-3L profiles did not change after the FMT or placebo. FMT-related adverse events were not reported.

Conclusion: FMT was safe but did not relieve symptoms or improve the HRQOL of patients with CFS. Small number of study subjects limits the generalizability of these results

Trial registration: ClinicalTrials.gov Identifier NCT04158427, https://register.clinicaltrials.gov, date of registration 08/08/2019

Source: Salonen TE, Jokinen E, Satokari R, Lahtinen P. Randomized, double-blinded, placebo-controlled pilot study: Efficacy of faecal microbiota transplantation on chronic fatigue syndrome. ResearchSquare [Preprint] April 25, 2023. https://doi.org/10.21203/rs.3.rs-2805527/v1 https://www.researchsquare.com/article/rs-2805527/v1 (Full text)

Positive Effects of Probiotic Therapy in Patients with Post-Infectious Fatigue

Abstract:

Post-infectious fatigue is a common complication that can lead to decreased physical efficiency, depression, and impaired quality of life. Dysbiosis of the gut microbiota has been proposed as a contributing factor, as the gut–brain axis plays an important role in regulating physical and mental health. This pilot study aimed to investigate the severity of fatigue and depression, as well as the quality of life of 70 patients with post-infectious fatigue who received a multi-strain probiotic preparation or placebo in a double-blind, placebo-controlled trial.
Patients completed questionnaires to assess their fatigue (fatigue severity scale (FSS)), mood (Beck Depression Inventory II (BDI-II)), and quality of life (short form-36 (SF-36)) at baseline and after 3 and 6 months of treatment. Routine laboratory parameters were also assessed, including immune-mediated changes in tryptophan and phenylalanine metabolism.
The intervention was effective in improving fatigue, mood, and quality of life in both the probiotic and placebo groups, with greater improvements seen in the probiotic group. FSS and BDI-II scores declined significantly under treatment with both probiotics and placebo, but patients who received probiotics had significantly lower FSS (p < 0.001) and BDI-II (p < 0.001) scores after 6 months.
Quality of life scores improved significantly in patients who received probiotics (p < 0.001), while patients taking a placebo only saw improvements in the “Physical limitation” and “Energy/Fatigue” subcategories. After 6 months neopterin was higher in patients receiving placebo, while no longitudinal changes in interferon-gamma mediated biochemical pathways were observed.
These findings suggest that probiotics may be a promising intervention for improving the health of patients with post-infectious fatigue, potentially through modulating the gut–brain axis.
Source: Obermoser K, Brigo N, Schroll A, Monfort-Lanzas P, Gostner JM, Engl S, Geisler S, Knoll M, Schennach H, Weiss G, Fuchs D, Bellmann-Weiler R, Kurz K. Positive Effects of Probiotic Therapy in Patients with Post-Infectious Fatigue. Metabolites. 2023; 13(5):639. https://doi.org/10.3390/metabo13050639 https://www.mdpi.com/2218-1989/13/5/639 (Full text)