The Many Neuroprogressive Actions of Tryptophan Catabolites (TRYCATs) that may be Associated with the Pathophysiology of Neuro-Immune Disorders

Abstract:

Many, if not all, chronic medical, neurodegenerative and neuroprogressive illnesses are characterised by chronic immune activation, oxidative and nitrosative stress (O&NS) and systemic inflammation. These factors, notably elevated pro-inflammatory cytokines, activate indoleamine 2,3-dioxygenase (IDO) leading to an upregulated tryptophan catabolite (TRYCAT) pathway of tryptophan degradation in the periphery and in the brain. In such conditions the TRYCAT pathway becomes the predominant system for tryptophan degradation in all body compartments.

In this paper we review the pathways whereby TRYCATs may play a role in neuro-inflammatory and neuroprogressive disease. Thus chronic activation of the TRYCAT pathway leads to the production of a range of neuroactive, neuroprotective and neurotoxic TRYCATs. Some TRYCATs such as quinolinic acid act as potent neurotoxins which inhibit ATP production by mitochondria, provoke increases in O&NS, disrupt neuron glial communication and blood brain barrier integrity, induce apoptosis of glial cells, directly damage neurons and function as a N-methyl D-aspartate (NMDA) receptor agonist.

Other TRYCATs such as kynurenic acid function as antagonists of NMDA, α- amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors and act to regulate levels of glutamate and dopamine.

The neuroprotective functions of this TRYCAT are likely exercised via engagement with alpha7 nicotinic acetylcholine and aryl hydrocarbon receptors but the neuroprotective effects stemming from elevated kynurenic acid levels come at the price of severely compromised neurocognitive function and emotional processing. Other TRYCATS also possess neurotoxic or neuroprotective properties via pro-oxidant and antioxidant effects.

Here we discuss the involvement of the above mentioned TRYCAT pathways in schizophrenia, Alzheimer’s disease and chronic fatigue syndrome.

Source: Morris G, Carvalho AF, Anderson G, Galecki P, Maes M. The Many Neuroprogressive Actions of Tryptophan Catabolites (TRYCATs) that may be Associated with the Pathophysiology of Neuro-Immune Disorders. Curr Pharm Des. 2016;22(8):963-77. https://www.ncbi.nlm.nih.gov/pubmed/26667000

 

A new case definition of Neuro-Inflammatory and Oxidative Fatigue (NIOF), a neuroprogressive disorder, formerly known as chronic fatigue syndrome or Myalgic Encephalomyelitis: results of multivariate pattern recognition methods and external validation by neuro-immune biomarkers

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) or Myalgic Encephalomyelitis (ME) is characterized by neuro-psychiatric (e.g. depression, irritability, sleep disorders, autonomic symptoms and neurocognitive defects) and physio-somatic (fatigue, a flu-like malaise, hyperalgesia, irritable bowel, muscle pain and tension) symptoms. New ME/CFS case definitions based on consensus criteria among experts are largely inadequate, e.g. those of the US Institute of Medicine .

OBJECTIVES: The aim of the present study was to delineate a new case definition of ME/CFS based on pattern recognition methods and using neuro-immune, inflammatory, oxidative and nitrosative stress (neuro-IO&NS) biomarkers as external validating criteria.

METHODS: We measured the 12-item Fibromyalgia and Chronic Fatigue Syndrome Rating (FF) Scale in 196 subjects with CFS (CDC criteria) and 83 with chronic fatigue. The “Neuro-IO&NS” biomarkers were: IgM / IgA responses against LPS of gut commensal bacteria (leaky gut), IgM responses to O&NS modified neoepitopes, autoimmunity to serotonin, plasma interleukin-1 (IL-1) and serum neopterin.

RESULTS: Cluster analysis showed the presence of two well-separated clusters with highly significant differences in symptoms and biomarkers. The cluster with higher scores on all FF items was externally validated against all IO&NS biomarkers and therefore this diagnostic group was labeled “Neuro-IO&NS Fatigue” or “Neuro-Inflammatory and Oxidative Fatigue” (NIOF). An algorithm was constructed which defined NIOF as chronic fatigue and 4 or more of the following 6 symptoms: muscle tension, memory disturbances, sleep disorders, irritable bowel, headache or a flu-like malaise. There was a significant overlap between NIOF and CFS although NIOF criteria were much more restrictive. Factor analysis showed two factors, the first a fatigue-hyperalgesia (fibromyalgic complaints) and the second a fatigue-depression factor.

 

Source: Maes M. A new case definition of Neuro-Inflammatory and Oxidative Fatigue (NIOF), a neuroprogressive disorder, formerly known as chronic fatigue syndrome or Myalgic Encephalomyelitis: results of multivariate pattern recognition methods and external validation by neuro-immune biomarkers. Neuro Endocrinol Lett. 2015;36(4):320-9. https://www.ncbi.nlm.nih.gov/pubmed/26454487

 

The Putative Role of Viruses, Bacteria, and Chronic Fungal Biotoxin Exposure in the Genesis of Intractable Fatigue Accompanied by Cognitive and Physical Disability

Abstract:

Patients who present with severe intractable apparently idiopathic fatigue accompanied by profound physical and or cognitive disability present a significant therapeutic challenge. The effect of psychological counseling is limited, with significant but very slight improvements in psychometric measures of fatigue and disability but no improvement on scientific measures of physical impairment compared to controls. Similarly, exercise regimes either produce significant, but practically unimportant, benefit or provoke symptom exacerbation. Many such patients are afforded the exclusionary, non-specific diagnosis of chronic fatigue syndrome if rudimentary testing fails to discover the cause of their symptoms.

More sophisticated investigations often reveal the presence of a range of pathogens capable of establishing life-long infections with sophisticated immune evasion strategies, including Parvoviruses, HHV6, variants of Epstein-Barr, Cytomegalovirus, Mycoplasma, and Borrelia burgdorferi. Other patients have a history of chronic fungal or other biotoxin exposure. Herein, we explain the epigenetic factors that may render such individuals susceptible to the chronic pathology induced by such agents, how such agents induce pathology, and, indeed, how such pathology can persist and even amplify even when infections have cleared or when biotoxin exposure has ceased. The presence of active, reactivated, or even latent Herpes virus could be a potential source of intractable fatigue accompanied by profound physical and or cognitive disability in some patients, and the same may be true of persistent Parvovirus B12 and mycoplasma infection. A history of chronic mold exposure is a feasible explanation for such symptoms, as is the presence of B. burgdorferi. The complex tropism, life cycles, genetic variability, and low titer of many of these pathogens makes their detection in blood a challenge. Examination of lymphoid tissue or CSF in such circumstances may be warranted.

 

Source: Morris G, Berk M, Walder K, Maes M. The Putative Role of Viruses, Bacteria, and Chronic Fungal Biotoxin Exposure in the Genesis of Intractable Fatigue Accompanied by Cognitive and Physical Disability. Mol Neurobiol. 2016 May;53(4):2550-71. doi: 10.1007/s12035-015-9262-7. Epub 2015 Jun 17. https://www.ncbi.nlm.nih.gov/pubmed/26081141

 

Attenuation of autoimmune responses to oxidative specific epitopes, but not nitroso-adducts, is associated with a better clinical outcome in Myalgic Encephalomyelitis/chronic fatigue syndrome

Abstract:

OBJECTIVES: There is evidence that inflammatory, oxidative and nitrosative stress (IO&NS) pathways participate in the pathophysiology of a subgroup of patients with Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS). Increased IgM-related autoimmune responses to oxidative specific epitopes (OSEs), including malondialdehyde (MDA), oleic acid and phosphatidyl inositol (Pi), and nitroso-(NO)-adducts, including NO-tryptophan (NOW), NO-arginine and NO-cysteinyl, are frequently observed in ME/CFS. Autoimmune responses in ME/CFS may be driven by increased bacterial translocation as measured by IgM and IgA responses to LPS of gram negative bacteria.

METHODS: The aim of this study is to examine whether IgM responses to OSEs and NO-adducts are related to a better outcome as measured by the Fibromyalgia and Fatigue Rating Scale (FF). 76 ME/CFS patients with initially abnormal autoimmune responses were treated with care-as-usual, including nutraceuticals with anti-IO&NS effects (NAIOS), such as L-carnitine, coenzyme Q10, taurine + lipoic acid, with or without curcumine + quercitine or N-acetyl-cysteine, zinc + glutamine.

RESULTS: We found that use of these NAIOS was associated with highly significant reductions in initially increased IgM-mediated autoimmune responses to OSEs and NO-adducts. A greater reduction in autoimmune responses to OSEs during intake of these NAIOS was associated with a lower FF score. Reductions in IgM responses to oleic acid, MDA and Pi, but not in any of the NO-adducts, were associated with reductions in severity of illness. These associations remained significant after adjusting for possible effects of increased bacterial translocation (leaky gut).

CONCLUSIONS: Our results show that autoimmune responses to OSEs are involved in the pathophysiology of ME/CFS and that these pathways are a new drug target in a subgroup of ME/CFS patients. Although hypernitrosylation and nitrosative stress play a role in ME/CFS, reductions in these pathways are not associated with lowered severity of illness. Randomized controlled trials with NAIOS should be carried out in the subgroup of ME/CFS patients with initially increased autoimmune responses to OSEs.

 

Source: Maes M, Leunis JC. Attenuation of autoimmune responses to oxidative specific epitopes, but not nitroso-adducts, is associated with a better clinical outcome in Myalgic Encephalomyelitis/chronic fatigue syndrome. Neuro Endocrinol Lett. 2014;35(7):577-85. https://www.ncbi.nlm.nih.gov/pubmed/25617880

 

Evidence for the existence of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) with and without abdominal discomfort (irritable bowel) syndrome

Abstract:

BACKGROUND: There is evidence that Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is accompanied by gastro-intestinal symptoms; and IgA and IgM responses directed against lipopolysaccharides (LPS) of commensal bacteria, indicating bacterial translocation.

METHODS: This study was carried out to examine gastro-intestinal symptoms in subjects with ME/CFS versus those with chronic fatigue (CF). The two groups were dissected by dichotomizing those fulfilling and not fulfilling Fukuda’s critera. In these groups, we examined the association between gastro-intestinal symptoms and the IgA and IgM responses directed against commensal bacteria.

RESULTS: Using cluster analysis performed on gastro-intestinal symptoms we delineated that the cluster analysis-generated diagnosis of abdominal discomfort syndrome (ADS) was significantly higher in subjects with ME/CFS (59.6%) than in those with CF (17.7%). The diagnosis of ADS was strongly associated with the diagnosis of irritable bowel syndrome (IBS). There is evidence that ME/CFS consists of two subgroups, i.e. ME/CFS with and without ADS. Factor analysis showed four factors, i.e. 1) inflammation-hyperalgesia; 2) fatigue-malaise; 3) gastro-intestinal symptoms/ADS; and 4) neurocognitive symptoms. The IgA and IgM responses to LPS of commensal bacteria were significantly higher in ME/CFS patients with ADS than in those without ADS.

CONCLUSIONS: The findings show that ADS is a characteristic of a subset of patients with ME/CFS and that increased bacterial translocation (leaky gut) is associated with ADS symptoms. This study has defined a pathway phenotype, i.e bacterial translocation, that is related to ME/CFS and ADS/IBS and that may drive systemic inflammatory processes.

 

Source: Maes M, Leunis JC, Geffard M, Berk M. Evidence for the existence of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) with and without abdominal discomfort (irritable bowel) syndrome. Neuro Endocrinol Lett. 2014;35(6):445-53. https://www.ncbi.nlm.nih.gov/pubmed/25433843

 

Oxidative and Nitrosative Stress and Immune-Inflammatory Pathways in Patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS)

Abstract:

Myalgic Encephalomyelitis (ME) / Chronic Fatigue Syndrome (CFS) has been classified as a disease of the central nervous system by the WHO since 1969. Many patients carrying this diagnosis do demonstrate an almost bewildering array of biological abnormalities particularly the presence of oxidative and nitrosative stress (O&NS) and a chronically activated innate immune system.

The proposal made herein is that once generated chronically activated O&NS and immune-inflammatory pathways conspire to generate a multitude of self-sustaining and self-amplifying pathological processes which are associated with the onset of ME/CFS. Sources of continuous activation of O&NS and immune-inflammatory pathways in ME/CFS are chronic, intermittent and opportunistic infections, bacterial translocation, autoimmune responses, mitochondrial dysfunctions, activation of the Toll-Like Receptor Radical Cycle, and decreased antioxidant levels.

Consequences of chronically activated O&NS and immune-inflammatory pathways in ME/CFS are brain disorders, including neuroinflammation and brain hypometabolism / hypoperfusion, toxic effects of nitric oxide and peroxynitrite, lipid peroxidation and oxidative damage to DNA, secondary autoimmune responses directed against disrupted lipid membrane components and proteins, mitochondrial dysfunctions with a disruption of energy metabolism (e.g. compromised ATP production) and dysfunctional intracellular signaling pathways. The interplay between all of these factors leads to self-amplifying feed forward loops causing a chronic state of activated O&NS, immune-inflammatory and autoimmune pathways which may sustain the disease.

 

Source: Morris G, Maes M. Oxidative and Nitrosative Stress and Immune-Inflammatory Pathways in Patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Curr Neuropharmacol. 2014 Mar;12(2):168-85. doi: 10.2174/1570159X11666131120224653. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964747/ (Full article)

 

Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs) is classified by the World Health Organization as a disorder of the central nervous system. ME/cfs is an neuro-immune disorder accompanied by chronic low-grade inflammation, increased levels of oxidative and nitrosative stress (O&NS), O&NS-mediated damage to fatty acids, DNA and proteins, autoimmune reactions directed against neoantigens and brain disorders. Mitochondrial dysfunctions have been found in ME/cfs, e.g. lowered ATP production, impaired oxidative phosphorylation and mitochondrial damage.

This paper reviews the pathways that may explain mitochondrial dysfunctions in ME/cfs. Increased levels of pro-inflammatory cytokines, such as interleukin-1 and tumor necrosis factor-α, and elastase, and increased O&NS may inhibit mitochondrial respiration, decrease the activities of the electron transport chain and mitochondrial membrane potential, increase mitochondrial membrane permeability, interfere with ATP production and cause mitochondrial shutdown. The activated O&NS pathways may additionally lead to damage of mitochondrial DNA and membranes thus decreasing membrane fluidity. Lowered levels of antioxidants, zinc and coenzyme Q10, and ω3 polyunsaturated fatty acids in ME/cfs may further aggravate the activated immuno-inflammatory and O&NS pathways.

Therefore, it may be concluded that immuno-inflammatory and O&NS pathways may play a role in the mitochondrial dysfunctions and consequently the bioenergetic abnormalities seen in patients with ME/cfs. Defects in ATP production and the electron transport complex, in turn, are associated with an elevated production of superoxide and hydrogen peroxide in mitochondria creating adaptive and synergistic damage.

It is argued that mitochondrial dysfunctions, e.g. lowered ATP production, may play a role in the onset of ME/cfs symptoms, e.g. fatigue and post exertional malaise, and may explain in part the central metabolic abnormalities observed in ME/cfs, e.g. glucose hypometabolism and cerebral hypoperfusion.

 

Source: Morris G, Maes M. Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis. 2014 Mar;29(1):19-36. doi: 10.1007/s11011-013-9435-x. Epub 2013 Sep 10.https://www.ncbi.nlm.nih.gov/pubmed/24557875

 

Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics

Abstract:

BACKGROUND: ‘Encephalomyelitis disseminata’ (multiple sclerosis) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are both classified as diseases of the central nervous system by the World Health Organization. This review aims to compare the phenomenological and neuroimmune characteristics of MS with those of ME/CFS.

DISCUSSION: There are remarkable phenomenological and neuroimmune overlaps between both disorders. Patients with ME/CFS and MS both experience severe levels of disabling fatigue and a worsening of symptoms following exercise and resort to energy conservation strategies in an attempt to meet the energy demands of day-to-day living. Debilitating autonomic symptoms, diminished cardiac responses to exercise, orthostatic intolerance and postural hypotension are experienced by patients with both illnesses.

Both disorders show a relapsing-remitting or progressive course, while infections and psychosocial stress play a large part in worsening of fatigue symptoms. Activated immunoinflammatory, oxidative and nitrosative (O+NS) pathways and autoimmunity occur in both illnesses. The consequences of O+NS damage to self-epitopes is evidenced by the almost bewildering and almost identical array of autoantibodies formed against damaged epitopes seen in both illnesses.

Mitochondrial dysfunctions, including lowered levels of ATP, decreased phosphocreatine synthesis and impaired oxidative phosphorylation, are heavily involved in the pathophysiology of both MS and ME/CFS. The findings produced by neuroimaging techniques are quite similar in both illnesses and show decreased cerebral blood flow, atrophy, gray matter reduction, white matter hyperintensities, increased cerebral lactate and choline signaling and lowered acetyl-aspartate levels.

SUMMARY: This review shows that there are neuroimmune similarities between MS and ME/CFS. This further substantiates the view that ME/CFS is a neuroimmune illness and that patients with MS are immunologically primed to develop symptoms of ME/CFS.

 

Source: Morris G, Maes M. Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics. BMC Med. 2013 Sep 17;11:205. doi: 10.1186/1741-7015-11-205. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847236/ (Full article)

 

The emerging role of autoimmunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs)

Abstract:

The World Health Organization classifies myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs) as a nervous system disease. Together with other diseases under the G93 heading, ME/cfs shares a triad of abnormalities involving elevated oxidative and nitrosative stress (O&NS), activation of immuno-inflammatory pathways, and mitochondrial dysfunctions with depleted levels of adenosine triphosphate (ATP) synthesis. There is also abundant evidence that many patients with ME/cfs (up to around 60 %) may suffer from autoimmune responses.

A wide range of reported abnormalities in ME/cfs are highly pertinent to the generation of autoimmunity. Here we review the potential sources of autoimmunity which are observed in people with ME/cfs. The increased levels of pro-inflammatory cytokines, e.g., interleukin-1 and tumor necrosis factor-α, and increased levels of nuclear factor-κB predispose to an autoimmune environment. Many cytokine abnormalities conspire to produce a predominance of effector B cells and autoreactive T cells. The common observation of reduced natural killer cell function in ME/cfs is a source of disrupted homeostasis and prolonged effector T cell survival. B cells may be pathogenic by playing a role in autoimmunity independent of their ability to produce antibodies.

The chronic or recurrent viral infections seen in many patients with ME/cfs can induce autoimmunity by mechanisms involving molecular mimicry and bystander activation. Increased bacterial translocation, as observed in ME/cfs, is known to induce chronic inflammation and autoimmunity. Low ATP production and mitochondrial dysfunction is a source of autoimmunity by inhibiting apoptosis and stimulating necrotic cell death. Self-epitopes may be damaged by exposure to prolonged O&NS, altering their immunogenic profile and become a target for the host’s immune system. Nitric oxide may induce many faces of autoimmunity stemming from elevated mitochondrial membrane hyperpolarization and blockade of the methionine cycle with subsequent hypomethylation of DNA. Here we also outline options for treatment involving rituximab and endotherapia.

 

Source: Morris G, Berk M, Galecki P, Maes M. The emerging role of autoimmunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs). Mol Neurobiol. 2014 Apr;49(2):741-56. doi: 10.1007/s12035-013-8553-0. Epub 2013 Sep 26. https://www.ncbi.nlm.nih.gov/pubmed/24068616 (Full article)