Rethinking ME/CFS Diagnostic Reference Intervals via Machine Learning, and the Utility of Activin B for Defining Symptom Severity

Abstract:

Biomarker discovery applied to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a disabling disease of inconclusive aetiology, has identified several cytokines to potentially fulfil a role as a quantitative blood/serum marker for laboratory diagnosis, with activin B a recent addition. We explored further the potential of serum activin B as a ME/CFS biomarker, alone and in combination with a range of routine test results obtained from pathology laboratories.

Previous pilot study results showed that activin B was significantly elevated for the ME/CFS participants compared to healthy (control) participants. All the participants were recruited via CFS Discovery and assessed via the Canadian/International Consensus Criteria. A significant difference for serum activin B was also detected for ME/CFS and control cohorts recruited for this study, but median levels were significantly lower for the ME/CFS cohort.

Random Forest (RF) modelling identified five routine pathology blood test markers that collectively predicted ME/CFS at ≥62% when compared via weighted standing time (WST) severity classes. A closer analysis revealed that the inclusion of activin B to the panel of pathology markers improved the prediction of mild to moderate ME/CFS cases. Applying correct WST class prediction from RFA modelling, new reference intervals were calculated for activin B and associated pathology markers, where 24-h urinary creatinine clearance, serum urea and serum activin B showed the best potential as diagnostic markers. While the serum activin B results remained statistically significant for the new participant cohorts, activin B was found to also have utility in enhancing the prediction of symptom severity, as represented by WST class.

Source: Lidbury BA, Kita B, Richardson AM, Lewis DP, Privitera E, Hayward S, de Kretser D, Hedger M. Rethinking ME/CFS Diagnostic Reference Intervals via Machine Learning, and the Utility of Activin B for Defining Symptom Severity. Diagnostics (Basel). 2019 Jul 19;9(3). pii: E79. doi: 10.3390/diagnostics9030079. https://www.mdpi.com/2075-4418/9/3/79 (Full article)

A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)

Abstract:

There is not currently a well-established, if any, biological test to diagnose myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The molecular aberrations observed in numerous studies of ME/CFS blood cells offer the opportunity to develop a diagnostic assay from blood samples. Here we developed a nanoelectronics assay designed as an ultrasensitive assay capable of directly measuring biomolecular interactions in real time, at low cost, and in a multiplex format.

To pursue the goal of developing a reliable biomarker for ME/CFS and to demonstrate the utility of our platform for point-of-care diagnostics, we validated the array by testing patients with moderate to severe ME/CFS patients and healthy controls. The ME/CFS samples’ response to the hyperosmotic stressor observed as a unique characteristic of the impedance pattern and dramatically different from the response observed among the control samples. We believe the observed robust impedance modulation difference of the samples in response to hyperosmotic stress can potentially provide us with a unique indicator of ME/CFS. Moreover, using supervised machine learning algorithms, we developed a classifier for ME/CFS patients capable of identifying new patients, required for a robust diagnostic tool.

Source: R. Esfandyarpour, A. Kashi, M. Nemat-Gorgani, J. Wilhelmy, and R. W. Davis. A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). PNAS first published April 29, 2019 https://doi.org/10.1073/pnas.1901274116

A new approach to find biomarkers in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) by single-cell Raman micro-spectroscopy

Abstract:

Chronic fatigue syndrome (CFS), also called myalgic encephalomyelitis (ME), is a debilitating disorder characterized by physical and mental exhaustion. Mitochondrial and energetic dysfunction has been investigated in CFS patients due to a hallmark relationship with fatigue, however, no consistent conclusion has yet been achieved.

Single-cell Raman spectra (SCRS) are label-free biochemical profiles, indicating phenotypic fingerprints of single cells. In this study, we applied a new approach using single-cell Raman microspectroscopy (SCRM) to examine 0 cells that lack mitochondrial DNA (mtDNA), and peripheral blood mononuclear cells (PBMCs) from CFS patients and healthy controls.

The experimental results show that Raman bands associated with phenylalanine in 0 cells and CFS patient PBMCs were significantly higher than wild type model and healthy controls. Remarkably, an increase in intensities of Raman phenylalanine bands were also observed in CFS patients. As similar changes were observed in the 0 cell model with a known deficiency in the mitochondrial respiratory chain as well as in CFS patients, our results suggest that the increase in cellular phenylalanine may relate to mitochondrial/energetic dysfunction in both systems.

Interestingly, phenylalanine can be used as a potential biomarker for diagnosis of CFS by SCRM. A machine learning classification model achieved an accuracy rate of 98% correctly assigning Raman spectra to either the CFS group or the control group. SCRM combined with machine learning algorithm therefore has the potential to become a diagnostic tool for CFS.

Source: Jiabao Xu, Michelle Potter, Cara Tomas, Jo Elson, Karl Morten, Joanna Poulton, Ning Wang, Hanqing Jin, Zhaoxu Hou and Wei Huang. A new approach to find biomarkers in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) by single-cell Raman micro-spectroscopy. Analyst, 22 Aug 2018.  http://pubs.rsc.org/en/Content/ArticleLanding/2018/AN/C8AN01437J#!divAbstract

Structural brain changes versus self-report: machine-learning classification of chronic fatigue syndrome patients

Abstract:

Chronic fatigue syndrome (CFS) is a disorder associated with fatigue, pain, and structural/functional abnormalities seen during magnetic resonance brain imaging (MRI). Therefore, we evaluated the performance of structural MRI (sMRI) abnormalities in the classification of CFS patients versus healthy controls and compared it to machine learning (ML) classification based upon self-report (SR). Participants included 18 CFS patients and 15 healthy controls (HC). All subjects underwent T1-weighted sMRI and provided visual analogue-scale ratings of fatigue, pain intensity, anxiety, depression, anger, and sleep quality. sMRI data were segmented using FreeSurfer and 61 regions based on functional and structural abnormalities previously reported in patients with CFS. Classification was performed in RapidMiner using a linear support vector machine and bootstrap optimism correction.

We compared ML classifiers based on (1) 61 a priori sMRI regional estimates and (2) SR ratings. The sMRI model achieved 79.58% classification accuracy. The SR (accuracy = 95.95%) outperformed both sMRI models. Estimates from multiple brain areas related to cognition, emotion, and memory contributed strongly to group classification. This is the first ML-based group classification of CFS. Our findings suggest that sMRI abnormalities are useful for discriminating CFS patients from HC, but SR ratings remain most effective in classification tasks.

Source: Sevel LS, Boissoneault J, Letzen JE, Robinson ME, Staud R. Structural brain changes versus self-report: machine-learning classification of chronic fatigue syndrome patients. Exp Brain Res. 2018 May 30. doi: 10.1007/s00221-018-5301-8. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/29846797

Identifying Key Symptoms Differentiating Myalgic Encephalomyelitis and Chronic Fatigue Syndrome from Multiple Sclerosis

Abstract:

It is unclear what key symptoms differentiate Myalgic Encephalomyelitis (ME) and Chronic Fatigue syndrome (CFS) from Multiple Sclerosis (MS). The current study compared self-report symptom data of patients with ME or CFS with those with MS. The self-report data is from the DePaul Symptom Questionnaire, and participants were recruited to take the questionnaire online.

Data were analyzed using a machine learning technique called decision trees. Five symptoms best differentiated the groups. The best discriminating symptoms were from the immune domain (i.e., flu-like symptoms and tender lymph nodes), and the trees correctly categorized MS from ME or CFS 81.2% of the time, with those with ME or CFS having more severe symptoms. Our findings support the use of machine learning to further explore the unique nature of these different chronic diseases

 

Source: Ohanian D, Brown A, Sunnquist M, Furst J, Nicholson L, Klebek L, Jason LA. Identifying Key Symptoms Differentiating Myalgic Encephalomyelitis and Chronic Fatigue Syndrome from Multiple Sclerosis. Neurology (ECronicon). 2016;4(2):41-45. Epub 2016 Dec 19. https://www.ncbi.nlm.nih.gov/pubmed/28066845

 

Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

BACKGROUND: Gastrointestinal disturbances are among symptoms commonly reported by individuals diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). However, whether ME/CFS is associated with an altered microbiome has remained uncertain. Here, we profiled gut microbial diversity by sequencing 16S ribosomal ribonucleic acid (rRNA) genes from stool as well as inflammatory markers from serum for cases (n = 48) and controls (n = 39). We also examined a set of inflammatory markers in blood: C-reactive protein (CRP), intestinal fatty acid-binding protein (I-FABP), lipopolysaccharide (LPS), LPS-binding protein (LBP), and soluble CD14 (sCD14).

RESULTS: We observed elevated levels of some blood markers for microbial translocation in ME/CFS patients; levels of LPS, LBP, and sCD14 were elevated in ME/CFS subjects. Levels of LBP correlated with LPS and sCD14 and LPS levels correlated with sCD14. Through deep sequencing of bacterial rRNA markers, we identified differences between the gut microbiomes of healthy individuals and patients with ME/CFS. We observed that bacterial diversity was decreased in the ME/CFS specimens compared to controls, in particular, a reduction in the relative abundance and diversity of members belonging to the Firmicutes phylum.

In the patient cohort, we find less diversity as well as increases in specific species often reported to be pro-inflammatory species and reduction in species frequently described as anti-inflammatory. Using a machine learning approach trained on the data obtained from 16S rRNA and inflammatory markers, individuals were classified correctly as ME/CFS with a cross-validation accuracy of 82.93 %.

CONCLUSIONS: Our results indicate dysbiosis of the gut microbiota in this disease and further suggest an increased incidence of microbial translocation, which may play a role in inflammatory symptoms in ME/CFS.

 

Source: Giloteaux L, Goodrich JK, Walters WA, Levine SM, Ley RE, Hanson MR. Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome. 2016 Jun 23;4(1):30. doi: 10.1186/s40168-016-0171-4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918027/ (Full article)