Decreased Pulmonary Blood Flow and Airway Volumes in Patients With Long COVID Syndrome Assessed by Functional Respiratory Imaging

Abstract:

Introduction: In contrast to normal chest X-ray, lung computed tomography (CT), and physiological lung and cardiac functions, many patients with long COVID syndrome suffer from shortness of breath.

Hypothesis: The aim of this study was to quantify the pulmonary blood and airway volumes of long COVID patients compared with that of healthy controls.

Methods: Patients with long COVID syndromes were included if they had PCR-verified previous (≥3 months) SARS-CoV-2 infection, had normal laboratory (e.g. inflammation, coagulation, cardiac or other organ) parameter, normal pulmonary morphology (chest X-ray and CT) and function (spirometry and body plethysmography). The lung CT images were postprocessed by Functional Respiratory imaging analysis by using 3D reconstruction with automated lung vessel segmentation algorithm. Data of the quantitative images were compared with age, gender, and BMI-matched healthy controls.

Results: Thirty patients (45±13 years, 37% male, 25.9±4.3 kg/m^2) at a median time of 256 (118-574) days after a confirmed COVID infection and 30 healthy controls (55±7y, 37% male, 26.3±2.7 kg/m^2) were included. All long COVID patients complained of dyspnoea and 14 (48.3%) patients reported thoracic pain. The total pulmonary blood volume was significantly lower in the long COVID patients compared to controls (190±24.3 mL/m^2 vs230.6±26.2 ml/m^2, p<0.001). Similarly, the capillary-small vessel blood flow (vessel cross sectional area <5 mm^2) was reduced in the long COVID population (118±19 mL vs 132±23 mL, p=0.011). (Figure). The specific image-based airway volume of the distal lung regions was lower than that of the healthy population (11.1±6.74 mL vs 17.33±7.7 mL, p<0.05).

Conclusions: Both the reduced global and capillary pulmonary blood flow, and distal airway volumes indicate impaired gas exchange and might explain the pulmonary complaints of patient with long COVID syndromes even severe months after Coronavirus infection.

Source: Mariann Gyongyosi, Emilie Han, Dominika Lukovic, Eslam Samaha, Jutta K Bergler-Klein and Ena Hasimbegovic. Decreased Pulmonary Blood Flow and Airway Volumes in Patients With Long COVID Syndrome Assessed by Functional Respiratory Imaging. Originally published6 Nov 2023Circulation. 2023;148:A16513 https://www.ahajournals.org/doi/abs/10.1161/circ.148.suppl_1.16513

Role of Vitamin D Supplementation for Symptoms and Lung Function Improvement in Long COVID Patient

Abstract:

Post-Acute COVID-19 Syndrome (PACS) or acute post-COVID-19 syndrome or also known as “Long Covid”, is a collection of persistent symptoms and long-term complications more than four weeks after the onset of initial symptoms. One of the leading causes of these long-term complications is pulmonary fibrosis, with an incidence of almost 25% in patients a year after hospitalization. Vitamin D is an important substance to our body homeostasis and regulation. Vitamin D has pleiotropic effect as pulmonary antifibrosis. This research aims to directly provide vitamin D3 supplements, especially in improving lung function in pulmonary fibrosis patients after COVID-19 infection.

This study was a one-group, quasiexperimental pretest-posttest design conducted at Labuang Baji hospitals in the eastern part of Indonesia. The population of this study was patients post-covid-19 infection with negative PCR results at least three months, had persistent symptoms of covid 19, and a CT scan confirmed pulmonary fibrosis or destroyed lung results. Lung function was measured using spirometry before and after the intervention (Vitamin D3 5000 IU supplementation with a frequency of once per day for two months). This study included 20 cases of Lung Fibrosis post-Covid-19. The majority of respondents were women and between the ages of 40 and 49. Among 20 patients, most of them fatigue or dyspneu or shortness of breath as their main symptoms.

After 2-months supplementation of Vitamin D 5000 IU, number of patients who had shortness of breath and fatigue reduced significantly (From 11 to 3 and from 11 to 2 patients, respectively). 85% of our patient had deficient-insufficient status of vitamin D. We found restrictive pattern as a dominant lung function in our patient. There was significant improvement in lung function status after 2-months vitamin D supplementation (p=0.02). Vitamin D supplementation for Long COVID may have benefit for symptoms and lung function improvement.

Source: Irawaty Djaharuddin, Muzakkir Amir, Jamaluddin Madolangan, Ahmad Fachry Toaha, Muthiah Nur Afifah, Muhammad Zaki Rahmani, Izza fauziah Irfan.Role of Vitamin D Supplementation for Symptoms and Lung Function Improvement in Long COVID Patient. Teikyo Medical Journal. Volume 45, Issue 09, November, 2022 https://www.teikyomedicaljournal.com/volume/TMJ/45/10/role-of-vitamin-d-supplementation-for-symptoms-and-lung-function-improvement-in-long-covid-patient-638db40f96abb.pdf (Full text)

Genome-wide Association Study of Long COVID

Abstract:

Infections can lead to persistent or long-term symptoms and diseases such as shingles after varicella zoster, cancers after human papillomavirus, or rheumatic fever after streptococcal infections(1,2). Similarly, infection by SARS-CoV-2 can result in Long COVID, a condition characterized by symptoms of fatigue and pulmonary and cognitive dysfunction(3-5). The biological mechanisms that contribute to the development of Long COVID remain to be clarified.

We leveraged the COVID-19 Host Genetics Initiative(6,7) to perform a genome-wide association study for Long COVID including up to 6,450 Long COVID cases and 1,093,995 population controls from 24 studies across 16 countries. We identified the first genome-wide significant association for Long COVID at the FOXP4 locus. FOXP4 has been previously associated with COVID-19 severity(6), lung function(8), and cancers(9), suggesting a broader role for lung function in the pathophysiology of Long COVID.

While we identify COVID-19 severity as a causal risk factor for Long COVID, the impact of the genetic risk factor located in the FOXP4 locus could not be solely explained by its association to severe COVID-19. Our findings further support the role of pulmonary dysfunction and COVID-19 severity in the development of Long COVID.

Source: Vilma LammiTomoko NakanishiSamuel E. JonesShea J. AndrewsJuha KarjalainenBeatriz CortésHeath E. O’BrienBrian E. Fulton-HowardHele H. HaapaniemiAxel SchmidtRuth E. MitchellAbdou MousasMassimo ManginoAlicia Huerta-ChagoyaNasa Sinnott-ArmstrongElizabeth T. CirulliMarc VaudelAlex S.F. KwongAmit K. MaitiMinttu MarttilaChiara BatiniFrancesca MinnaiAnna R. DearmanC.A. Robert WarmerdamCelia B. SequerosThomas W. WinklerDaniel M. JordanLindsay GuareEkaterina VergasovaEirini MarouliPasquale StrianoUmmu Afeera ZainulabidAshutosh KumarHajar Fauzan AhmadRyuya EdahiroShuhei AzekawaLong COVID Host Genetics InitiativeFinnGenDBDS Genomic ConsortiumGEN-COVID Multicenter StudyJoseph J. GrzymskiMakoto IshiiYukinori OkadaNoam D. BeckmannMeena KumariRalf WagnerIris M. HeidCatherine JohnPatrick J. ShortPer MagnusKarina BanasikFrank GellerLude H. FrankeAlexander RakitkoEmma L. DuncanAlessandra RenieriKonstantinos K. TsilidisRafael de CidAhmadreza NiavaraniTeresa Tusié-LunaShefali S. VermaGeorge Davey SmithNicholas J. TimpsonMark J. DalyAndrea GannaEva C. SchulteJ. Brent RichardsKerstin U. LudwigMichael HultströmHugo ZebergHanna M. Ollila. Genome-wide Association Study of Long COVID. https://www.medrxiv.org/content/10.1101/2023.06.29.23292056v1.full-text (Full text)

Long COVID in Young Patients: Impact on Lung Volume Evaluated Using Multidetector CT

Abstract:

Purpose: To evaluate using quantitative analysis on chest CT images a possible lung volume reduction in Long COVID patients who complain mild respiratory symptoms, with chest CT negative for inflammatory findings.
Materials and Methods: CT images of patients from 18 to 40 years old who underwent chest CT scan at our institution were analyzed retrospectively, using AwServer Thoracic VCAR software for a quantitative study. Exclusion criteria were inflammatory findings at CT, previous lung surgery, lung cancer, and breath artifacts that invalidate the quality of images. Patients were divided into two groups: in the first one (“post-COVID”) were patients who had previous SARS-CoV-2 infection, confirmed by an RT-PCR, who underwent chest CT from 3 to 6 months after their negativization for long COVID symptoms; in the control group (“non-COVID”), were enrolled patients who underwent a chest CT scan from January 2018 to December 2019, before the spread of COVID in Italy.
Results: Our final population included 154 TC, 77 post-COVID patients (mean age 33 ± 6) and 77 non-COVID patients (mean age 33 ± 4.9). Non statistical significative differences were obtained between groups in terms of age, sex, and other characteristics that affect total lung capacity such as obesity, thoracic malformations, and smoking habit. Mean values of the total lung volume (TV), right-lung volume (RV), and left-lung volume (LV) in the post-COVID group compared with non-COVID group were, respectively: 5.25 ± 0.25 L vs. 5.72 ± 0.26 L (p = 0.01); 2.76 ± 0.14 L vs. 3 ± 0.14 L (p = 0.01); 2.48 ± 0.12 L vs. 2.72 ± 0.12 L (p = 0.01).
Conclusion: In patients with symptoms suggesting Long COVID and negative chest CT macroscopic findings, quantitative volume analysis demonstrated a mean value of reduction in lung volume of 10% compared to patients of the same age who never had COVID. A chest CT negative for inflammatory findings may induce clinicians to attribute Long COVID mild respiratory symptoms to anxiety, especially in young patients. Our study brings us beyond appearances and beyond the classic radiological signs, introducing a quantitative evaluation of lung volumes in these patients. It is hard to establish to what extent this finding may contribute to Long COVID symptoms, but this is another step to gain a wider knowledge of the potential long-term effects caused by this new virus.
Source: Bellini D, Capodiferro P, Vicini S, Rengo M, Carbone I. Long COVID in Young Patients: Impact on Lung Volume Evaluated Using Multidetector CT. Tomography. 2023; 9(4):1276-1285. https://doi.org/10.3390/tomography9040101 https://www.mdpi.com/2379-139X/9/4/101 (Full text)
Source:

Ultra-rare RTEL1 gene variants associate with acute severity of COVID-19 and evolution to pulmonary fibrosis as a specific long COVID disorder

Abstract:

Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a novel coronavirus that caused an ongoing pandemic of a pathology termed Coronavirus Disease 19 (COVID-19). Several studies reported that both COVID-19 and RTEL1 variants are associated with shorter telomere length, but a direct association between the two is not generally acknowledged. Here we demonstrate that up to 8.6% of severe COVID-19 patients bear RTEL1 ultra-rare variants, and show how this subgroup can be recognized.

Methods: A cohort of 2246 SARS-CoV-2-positive subjects, collected within the GEN-COVID Multicenter study, was used in this work. Whole exome sequencing analysis was performed using the NovaSeq6000 System, and machine learning methods were used for candidate gene selection of severity. A nested study, comparing severely affected patients bearing or not variants in the selected gene, was used for the characterisation of specific clinical features connected to variants in both acute and post-acute phases.

Results: Our GEN-COVID cohort revealed a total of 151 patients carrying at least one RTEL1 ultra-rare variant, which was selected as a specific acute severity feature. From a clinical point of view, these patients showed higher liver function indices, as well as increased CRP and inflammatory markers, such as IL-6. Moreover, compared to control subjects, they present autoimmune disorders more frequently. Finally, their decreased diffusion lung capacity for carbon monoxide after six months of COVID-19 suggests that RTEL1 variants can contribute to the development of SARS-CoV-2-elicited lung fibrosis.

Conclusion: RTEL1 ultra-rare variants can be considered as a predictive marker of COVID-19 severity, as well as a marker of pathological evolution in pulmonary fibrosis in the post-COVID phase. This notion can be used for a rapid screening in hospitalized infected people, for vaccine prioritization, and appropriate follow-up assessment for subjects at risk.

Trial Registration NCT04549831 (www.clinicaltrial.org)

Source: Bergantini, L., Baldassarri, M., d’Alessandro, M. et al. Ultra-rare RTEL1 gene variants associate with acute severity of COVID-19 and evolution to pulmonary fibrosis as a specific long COVID disorder. Respir Res 24, 158 (2023). https://doi.org/10.1186/s12931-023-02458-7 https://respiratory-research.biomedcentral.com/articles/10.1186/s12931-023-02458-7 (Full text)

Pulmonary circulation abnormalities in post-acute COVID-19 syndrome: dual-energy CT angiographic findings in 79 patients

Abstract:

Objectives: To evaluate the frequency and pattern of pulmonary vascular abnormalities in the year following COVID-19.

Methods: The study population included 79 patients remaining symptomatic more than 6 months after hospitalization for SARS-CoV-2 pneumonia who had been evaluated with dual-energy CT angiography.

Results: Morphologic images showed CT features of (a) acute (2/79; 2.5%) and focal chronic (4/79; 5%) PE; and (b) residual post COVID-19 lung infiltration (67/79; 85%). Lung perfusion was abnormal in 69 patients (87.4%). Perfusion abnormalities included (a) perfusion defects of 3 types: patchy defects (n = 60; 76%); areas of non-systematized hypoperfusion (n = 27; 34.2%); and/or PE-type defects (n = 14; 17.7%) seen with (2/14) and without (12/14) endoluminal filling defects; and (b) areas of increased perfusion in 59 patients (74.9%), superimposed on ground-glass opacities (58/59) and vascular tree-in-bud (5/59). PFTs were available in 10 patients with normal perfusion and in 55 patients with abnormal perfusion. The mean values of functional variables did not differ between the two subgroups with a trend toward lower DLCO in patients with abnormal perfusion (74.8 ± 16.7% vs 85.0 ± 8.1).

Conclusion: Delayed follow-up showed CT features of acute and chronic PE but also two types of perfusion abnormalities suggestive of persistent hypercoagulability as well as unresolved/sequelae of microangiopathy.

Clinical relevance statement: Despite dramatic resolution of lung abnormalities seen during the acute phase of the disease, acute pulmonary embolism and alterations at the level of lung microcirculation can be identified in patients remaining symptomatic in the year following COVID-19.

Key points: • This study demonstrates newly developed proximal acute PE/thrombosis in the year following SARS-CoV-2 pneumonia. • Dual-energy CT lung perfusion identified perfusion defects and areas of increased iodine uptake abnormalities, suggestive of unresolved damage to lung microcirculation. • This study suggests a complementarity between HRCT and spectral imaging for proper understanding of post COVID-19 lung sequelae.

Source: Mohamed I, de Broucker V, Duhamel A, Giordano J, Ego A, Fonne N, Chenivesse C, Remy J, Remy-Jardin M. Pulmonary circulation abnormalities in post-acute COVID-19 syndrome: dual-energy CT angiographic findings in 79 patients. Eur Radiol. 2023 Apr 25:1–13. doi: 10.1007/s00330-023-09618-9. Epub ahead of print. PMID: 37145145; PMCID: PMC10129318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10129318/ (Full text)

The fatal trajectory of pulmonary COVID-19 is driven by lobular ischemia and fibrotic remodelling

Abstract:

Background: COVID-19 is characterized by a heterogeneous clinical presentation, ranging from mild symptoms to severe courses of disease. 9-20% of hospitalized patients with severe lung disease die from COVID-19 and a substantial number of survivors develop long-COVID. Our objective was to provide comprehensive insights into the pathophysiology of severe COVID-19 and to identify liquid biomarkers for disease severity and therapy response.

Methods: We studied a total of 85 lungs (n = 31 COVID autopsy samples; n = 7 influenza A autopsy samples; n = 18 interstitial lung disease explants; n = 24 healthy controls) using the highest resolution Synchrotron radiation-based hierarchical phase-contrast tomography, scanning electron microscopy of microvascular corrosion casts, immunohistochemistry, matrix-assisted laser desorption ionization mass spectrometry imaging, and analysis of mRNA expression and biological pathways. Plasma samples from all disease groups were used for liquid biomarker determination using ELISA. The anatomic/molecular data were analyzed as a function of patients’ hospitalization time.

Findings: The observed patchy/mosaic appearance of COVID-19 in conventional lung imaging resulted from microvascular occlusion and secondary lobular ischemia. The length of hospitalization was associated with increased intussusceptive angiogenesis. This was associated with enhanced angiogenic, and fibrotic gene expression demonstrated by molecular profiling and metabolomic analysis. Increased plasma fibrosis markers correlated with their pulmonary tissue transcript levels and predicted disease severity. Plasma analysis confirmed distinct fibrosis biomarkers (TSP2, GDF15, IGFBP7, Pro-C3) that predicted the fatal trajectory in COVID-19.

Interpretation: Pulmonary severe COVID-19 is a consequence of secondary lobular microischemia and fibrotic remodelling, resulting in a distinctive form of fibrotic interstitial lung disease that contributes to long-COVID.

Source: Ackermann M, Kamp JC, Werlein C, Walsh CL, Stark H, Prade V, Surabattula R, Wagner WL, Disney C, Bodey AJ, Illig T, Leeming DJ, Karsdal MA, Tzankov A, Boor P, Kühnel MP, Länger FP, Verleden SE, Kvasnicka HM, Kreipe HH, Haverich A, Black SM, Walch A, Tafforeau P, Lee PD, Hoeper MM, Welte T, Seeliger B, David S, Schuppan D, Mentzer SJ, Jonigk DD. The fatal trajectory of pulmonary COVID-19 is driven by lobular ischemia and fibrotic remodelling. EBioMedicine. 2022 Nov;85:104296. doi: 10.1016/j.ebiom.2022.104296. Epub 2022 Oct 4. PMID: 36206625; PMCID: PMC9535314. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9535314/ (Full text)

Lung perfusion assessment in children with long-COVID: A pilot study

Abstract:

Background: There is increasing evidence that chronic endotheliopathy can play a role in patients with Post-Covid Condition (PCC, or Long Covid) by affecting peripheral vascularization. This pilot study aimed at assessing lung perfusion in children with Long-COVID with 99m Tc-MAA SPECT/CT.

Materials and methods: lung 99m Tc-MAA SPECT/CT was performed in children with Long-COVID and a pathological cardiopulmonary exercise testing (CPET). Intravenous injections were performed on patients in the supine position immediately before the planar scan according to the EANM guidelines for lung scintigraphy in children, followed by lung SPECT/CT acquisition. Reconstructed studies were visually analyzed.

Results: Clinical and biochemical data were collected during acute infection and follow-up in 14 children (6 females, mean age: 12.6 years) fulfilling Long-COVID diagnostic criteria and complaining of chronic fatigue and postexertional malaise after mild efforts, documented by CPET. Imaging results were compared with clinical scenarios during acute infection and follow-up. Six out of 14 (42.8%) children showed perfusion defects on 99m Tc-MAA SPECT/CT scan, without morphological alterations on coregistered CT.

Conclusions: This pilot investigation confirmed previous data suggesting that a small subgroup of children can develop lung perfusion defects after severe acute respiratory syndrome coronavirus 2 infection. Larger cohort studies are needed to confirm these preliminary results, providing also a better understanding of which children may deserve this test and how to manage those with lung perfusion defects.

Source: Pizzuto DA, Buonsenso D, Morello R, De Rose C, Valentini P, Fragano A, Baldi F, Di Giuda D. Lung perfusion assessment in children with long-COVID: A pilot study. Pediatr Pulmonol. 2023 Apr 25. doi: 10.1002/ppul.26432. Epub ahead of print. PMID: 37097045. https://onlinelibrary.wiley.com/doi/10.1002/ppul.26432 (Full text)

Post-acute sequelae of COVID-19 infection

Highlights:

• Higher post-acute depression/anxiety, DVT & fibromyalgia among COVID-19 patients.
• Higher lung disease and sleep disturbance, when acute-phase hospitalized included.
• No higher risk observed for CVA, MI, HTN, AKI, IHD or diabetes.

Abstract:

To determine if people infected with SARS-CoV-2 were at higher risk of developing selected medical conditions post-recovery, data were extracted from the database of a large health maintenance organization (HMO) in Israel between March 2020 and May 2021. For each condition, a condition-naïve group prior to COVID-19 (PCR-positive) infection were compared to a condition-naïve, non-COVID-19 infected group, matched by gender, age, socioeconomic status, minority group status and number of months visited primary care physician (PCP) in previous year. Diagnosis and recuperation dates for each COVID-19 infected participant were applied to their matched comparison participant (1:1 ratio). Incidence of each condition was measured between date of recuperation and end of study period for each group and Cox regression models developed to determine hazard ratios by group status, controlling for demographic and health variables.

Crude and adjusted incidence rates were higher for the COVID-19 infected group than those not infected with COVID-19 for treatment for depression/anxiety, sleep disturbance, diagnosis of deep venous thrombosis, lung disease and fibromyalgia. Differences in incidence were no longer observed between the two groups for treatment of sleep disturbance, and diagnosis of lung disease when those hospitalized during the acute-phase of illness (any reason) were excluded. No difference was found by COVID-19 infection status for post-acute incidence of diabetes, cerebrovascular accident, myocardial infarction, acute kidney disease, hypertension and ischemic heart disease.

Patients post- COVID-19 infection should be evaluated for depression, anxiety, sleep disturbance, DVT, lung disease and fibromyalgia.

Source: Kertes Jennifer, Shapiro Ben David Shirley,  Porath Avib et al. Post-acute sequelae of COVID-19 infection. Preventive Medicine Reports. Available online 21 December 2022, 102097. https://www.sciencedirect.com/science/article/pii/S2211335522004041 (Full text)

Persistent alveolar type 2 dysfunction and lung structural derangement in post-acute COVID-19

Abstract:

SARS-CoV-2 infection can manifest as a wide range of respiratory and systemic symptoms well after the acute phase of infection in over 50% of patients. Key questions remain on the long-term effects of infection on tissue pathology in recovered COVID-19 patients. To address these questions we performed multiplexed imaging of post-mortem lung tissue from 12 individuals who died post-acute COVID-19 (PC) and compare them to lung tissue from patients who died during the acute phase of COVID-19, or patients who died with idiopathic pulmonary fibrosis (IPF), and otherwise healthy lung tissue.

We find evidence of viral presence in the lung up to 359 days after the acute phase of disease, including in patients with negative nasopharyngeal swab tests. The lung of PC patients are characterized by the accumulation of senescent alveolar type 2 cells, fibrosis with hypervascularization of peribronchial areas and alveolar septa, as the most pronounced pathophysiological features. At the cellular level, lung disease of PC patients, while distinct, shares pathological features with the chronic pulmonary disease of IPF. which may help rationalize interventions for PC patients.

Altogether, this study provides an important foundation for the understanding of the long-term effects of SARS-CoV-2 pulmonary infection at the microanatomical, cellular, and molecular level.

Source: André F. RendeiroHiranmayi RavichandranJunbum KimAlain C. BorczukOlivier ElementoRobert E. Schwartz. Persistent alveolar type 2 dysfunction and lung structural derangement in post-acute COVID-19.