The role of gut microbiota in etiopathogenesis of long COVID syndrome

To the editor.

COVID-19, a novel infectious disease caused by SARS-CoV-2 first emerged on November 17, 2019 had a high fatality rate and affected millions of people around the world [1]. The involvement of lung gut axis and the identification of viral RNA in feces of infected patients has drawn attention to a possible fecal-oral transmission route of SARS-CoV-2 [2].

Recent research shows a potential connection between long-term COVID-19 and dysbiosis of the gut flora. Long COVID-19 infection or post-acute COVID-19 syndrome is seen after weeks or months after the initial COVID-19 infection is characterized by complications and lingering symptoms such as fatigue, muscle weakness, and sleeplessness. Up to 3 out of 4 individuals report at least one symptom six months after recovering from COVID-19 infection, making it a relatively prevalent condition [3]. Long COVID may develop as a result of a heightened immune response, cell damage, or physiological effects of COVID-19 infection.

The gut microbiome, the billions of bacteria, fungus, and other microbes that live in the digestive tract, has been linked to COVID-19 severity and may possibly have an impact on the healing process, according to a growing body of research [4]. Researchers at the Chinese University of Hong Kong’s Center for Gut Microbiota Research discovered a clue in 2020.

When compared to healthy controls, persons with COVID-19 had unique changes in their gut microbiota, or the population of bacteria that live in their gut [5]. Early reports from Wuhan suggested that 2–10% of COVID-19 patients experienced gastrointestinal (GI) symptoms, such as diarrhoea, however a recent meta-analysis found that up to 20% of patients with COVID-19 had GI symptoms. SARS-CoV-2 virus was found in anal swabs and stool samples in over half of COVID-19 patients, suggesting that the digestive tract could be an extrapulmonary location for virus multiplication and activity [67].

Read the rest of this article HERE.

Source: Kaushik P, Kumari M, Singh NK, Suri A. The role of gut microbiota in etiopathogenesis of long COVID syndrome. Horm Mol Biol Clin Investig. 2022 Nov 1. doi: 10.1515/hmbci-2022-0079. Epub ahead of print. PMID: 36317311. https://www.degruyter.com/document/doi/10.1515/hmbci-2022-0079/html (Full text)

Dysautonomia in Children with Post-Acute Sequelae of Coronavirus 2019 Disease and/or Vaccination

Abstract:

Long-term health problems such as fatigue, palpitations, syncope, and dizziness are well-known in patients after COVID-19 (post-acute sequelae of coronavirus (PASC)). More recently, comparable problems have been noticed after the SARS-CoV-2 vaccination (post-VAC). The pathophysiology of these problems is not well-understood.

Methods: In 38 children and young adults, we tested if these health problems were related to dysautonomia in an active standing test (Group 1: 19 patients after COVID-19; Group 2: 12 patients with a breakthrough infection despite a vaccination; and Group 3: 7 patients after a vaccination without COVID-19). The data were compared with a control group of 47 healthy age-matched patients, as recently published.

Results: All patients had a normal left ventricular function as measured by echocardiography. Significantly elevated diastolic blood pressure in all patient groups indicated a regulatory cardiovascular problem. Compared with the healthy control group, the patient groups showed significantly elevated heart rates whilst lying and standing, with significantly higher heart rate increases. The stress index was significantly enhanced in all patient groups whilst lying and standing. Significantly decreased pNN20 values, mostly whilst standing, indicated a lower vagus activity in all patient groups. The respiratory rates were significantly elevated in Groups 1 and 2.

Conclusion: The uniform increase in the heart rates and stress indices, together with low pNN20 values, indicated dysautonomia in children with health problems after COVID-19 disease and/or vaccination. A total of 8 patients fulfilled the criteria of postural orthostatic tachycardia syndrome and 9 patients of an inappropriate sinus tachycardia, who were successfully treated with omega-3 fatty acid supplementation and pharmacotherapy.

Source: Buchhorn R. Dysautonomia in Children with Post-Acute Sequelae of Coronavirus 2019 Disease and/or Vaccination. Vaccines (Basel). 2022 Oct 9;10(10):1686. doi: 10.3390/vaccines10101686. PMID: 36298551; PMCID: PMC9607162. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607162/ (Full text)

Nirmatrelvir and the Risk of Post-Acute Sequelae of COVID-19

Abstract:

Long Covid — the disease encompassing the post-acute sequelae of SARS-CoV-2 (PASC) — affects millions of people around the world. Prevention of PASC is an urgent public health priority. In this work, we aimed to examine whether treatment with nirmatrelvir in the acute phase of COVID-19 is associated with reduced risk of post-acute sequelae.

We used the healthcare databases of the US Department of Veterans Affairs to identify users of the health system who had a SARS-CoV-2 positive test between March 01, 2022 and June 30, 2022, were not hospitalized on the day of the positive test, had at least 1 risk factor for progression to severe COVID-19 illness and survived the first 30 days after SARS-CoV-2 diagnosis. We identify those who were treated with oral nirmatrelvir within 5 days after the positive test (n=9217) and those who received no COVID-19 antiviral or antibody treatment during the acute phase of SARS-CoV-2 infection (control group, n= 47,123). Inverse probability weighted survival models were used to estimate the effect of nirmatrelvir (versus control) on a prespecified panel of 12 post-acute COVID-19 outcomes and reported as hazard ratio (HR) and absolute risk reduction (ARR) in percentage at 90 days.

Compared to the control group, treatment with nirmatrelvir was associated with reduced risk of PASC (HR 0.74 95% CI (0.69, 0.81), ARR 2.32 (1.73, 2.91)) including reduced risk of 10 of 12 post-acute sequelae in the cardiovascular system (dysrhythmia and ischemic heart disease), coagulation and hematologic disorders (deep vein thrombosis, and pulmonary embolism), fatigue, liver disease, acute kidney disease, muscle pain, neurocognitive impairment, and shortness of breath. Nirmatrelvir was also associated with reduced risk of post-acute death (HR 0.52 (0.35, 0.77), ARR 0.28 (0.14, 0.41)), and post-acute hospitalization (HR 0.70 (0.61, 0.80), ARR 1.09 (0.72, 1.46)). Nirmatrelvir was associated with reduced risk of PASC in people who were unvaccinated, vaccinated, and boosted, and in people with primary SARS-CoV-2 infection and reinfection.

In sum, our results show that in people with SARS-CoV-2 infection who had at least 1 risk factor for progression to severe COVID-19 illness, treatment with nirmatrelvir within 5 days of a positive SARS-CoV-2 test was associated with reduced risk of PASC regardless of vaccination status and history of prior infection. The totality of findings suggests that treatment with nirmatrelvir during the acute phase of COVID-19 reduces the risk of post-acute adverse health outcomes.

Source: Yan XieTaeyoung ChoiZiyad Al-Aly. Nirmatrelvir and the Risk of Post-Acute Sequelae of COVID-19.

Long COVID: defining the role of rheumatology in care and research

The global pandemic of COVID-19 has had an impact on the profession of rheumatology from many perspectives, including its effects on our patients with immune-mediated conditions and immunocompromised states, the disruption of care pathways, and beyond. There also are lingering questions about how the next phase of the pandemic will evolve, with the continuing emergence of new viral variants posing a continuing threat to our patients. Beyond these formidable challenges is the uncertainty around the long-term effects of COVID-19—referred to as long COVID among other names—in the rheumatology patient population, and the role of the rheumatology practitioner in care of and research among this population. Given the current global impact of long COVID and our early stages of understanding of the condition, we pose a series of questions for the rheumatology profession, to stimulate reflection and discussion around how to address long COVID.

Read the rest of this article HERE.

Source: Calabrese LH, Calabrese CM. Long COVID: defining the role of rheumatology in care and research. Lancet Rheumatol. 2022 Oct 3. doi: 10.1016/S2665-9913(22)00266-1. Epub ahead of print. PMID: 36211989; PMCID: PMC9529216. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529216/ (Full text)

Antioxidants and Long Covid

Abstract:

Long Covid has many symptoms that overlap with ME(myalgic encephalomyelitis)/CFS(chronic fatigue syndrome), FM(fibromyalgia), EBV(Epstein-Barr virus), CMV(cytomegalovirus), CIRS (chronic inflammatory response syndrome), MCAS(mast cell activation syndrome), POTS(postural orthostatic tachycardia syndrome), and post viral fatigue syndrome. They all portend a “long haul” with an antioxidant shortfall and elevated Ca:Mg. Oxidative stress is the root cause.

Linkage between TGF(transforming growth factor)-β, IFN(interferon)-γ, the RAS(renin angiotensin system), and the KKS(kallikrein kinin system) is discussed. Technical explanations for the renin aldosterone paradox in POTS, the betrayal of TGF-β, and the commonality of markers for the Warburg effect are offered. The etiology of the common Long Covid symptoms of post exertional malaise, fatigue, and brain fog as well as anosmia, hair loss, and GI symptoms is technically discussed. Ca:Mg is critical to the glutamate/GABA balance. The role of GABA and butyrates from the “good” intestinal bacteria in the gut-brain axis and its correlation with chronic fatigue diseases are explored.

The crosstalk between the ENS(enteric nervous system) and the ANS(autonomic nervous system) and the role of the vagus in both are emphasized. HRV(heart rate variability), the fifth vital sign, points to an expanded gut-brain-heart/lung axis. A suggested approach to all of these – Long Covid, chronic fatigue diseases, post viral fatigue syndrome, and general health – is presented.

Source: Chambers, P. Antioxidants and Long Covid. Preprints 2022, 2022100195 (doi: 10.20944/preprints202210.0195.v1).  https://www.preprints.org/manuscript/202210.0195/v1 (Full text available as PDF file)

Pathophysiology of Post-COVID syndromes: a new perspective

Abstract:

Most COVID-19 patients recovered with low mortality; however, some patients experienced long-term symptoms described as “long-COVID” or “Post-COVID syndrome” (PCS). Patients may have persisting symptoms for weeks after acute SARS-CoV-2 infection, including dyspnea, fatigue, myalgia, insomnia, cognitive and olfactory disorders. These symptoms may last for months in some patients.

PCS may progress in association with the development of mast cell activation syndrome (MCAS), which is a distinct kind of mast cell activation disorder, characterized by hyper-activation of mast cells with inappropriate and excessive release of chemical mediators. COVID-19 survivors, mainly women, and patients with persistent severe fatigue for 10 weeks after recovery with a history of neuropsychiatric disorders are more prone to develop PCS. High D-dimer levels and blood urea nitrogen were observed to be risk factors associated with pulmonary dysfunction in COVID-19 survivors 3 months post-hospital discharge with the development of PCS. PCS has systemic manifestations that resolve with time with no further complications. However, the final outcomes of PCS are chiefly unknown.

Persistence of inflammatory reactions, autoimmune mimicry, and reactivation of pathogens together with host microbiome alterations may contribute to the development of PCS. The deregulated release of inflammatory mediators in MCAS produces extraordinary symptoms in patients with PCS. The development of MCAS during the course of SARS-CoV-2 infection is correlated to COVID-19 severity and the development of PCS. Therefore, MCAS is treated by antihistamines, inhibition of synthesis of mediators, inhibition of mediator release, and inhibition of degranulation of mast cells.

Source: Batiha, G.ES., Al-kuraishy, H.M., Al-Gareeb, A.I. et al. Pathophysiology of Post-COVID syndromes: a new perspective. Virol J 19, 158 (2022). https://doi.org/10.1186/s12985-022-01891-2  https://virologyj.biomedcentral.com/articles/10.1186/s12985-022-01891-2 (Full text)

A new clinical challenge: Supporting patients coping with the long-term effects of COVID-19

Abstract:

Mental Health Practitioners (MHPs) have a unique opportunity to provide resources and support to those suffering from Long COVID (LC), the post infectious illness that often follows an acute SARS-CoV-2 infection. In working with these individuals, MHPs can learn from the experiences of patients with another post-infectious disease known as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS was once thought to be a psychologically mediated disorder caused by deconditioning and the fear of exertion following a precipitating event such as a viral infection. Research now shows that LC and ME/CFS are biomedical, multisystem, complex physiologic diseases. This article provides a framework to MHPs for the treatment of LC patients using knowledge derived from three decades of research on ME/CFS.

Source: Neal C. Goldberg, Sabrina Poirier, Allison Kanas, Lisa McCorkell, Carrie Anna McGinn, Yochai Re’em, Kathi Kuehnel, Nina Muirhead, Tahlia Ruschioni, Susan Taylor-Brown & Leonard A. Jason (2022) A new clinical challenge: supporting patients coping with the long-term effects of COVID-19, Fatigue: Biomedicine, Health & Behavior, DOI: 10.1080/21641846.2022.2128576 (Full text)

Social Media Mining of Long-COVID Self-Medication Reported by Reddit Users: Feasibility Study to Support Drug Repurposing

Background: Since the beginning of the COVID-19 pandemic, over 480 million people have been infected and more than 6 million people have died from COVID-19 worldwide. In some patients with acute COVID-19, symptoms manifest over a longer period, which is also called “long-COVID.” Unmet medical needs related to long-COVID are high, since there are no treatments approved. Patients experiment with various medications and supplements hoping to alleviate their suffering. They often share their experiences on social media.

Objective: The aim of this study was to explore the feasibility of social media mining methods to extract important compounds from the perspective of patients. The goal is to provide an overview of different medication strategies and important agents mentioned in Reddit users’ self-reports to support hypothesis generation for drug repurposing, by incorporating patients’ experiences.

Methods:We used named-entity recognition to extract substances representing medications or supplements used to treat long-COVID from almost 70,000 posts on the “/r/covidlonghaulers” subreddit. We analyzed substances by frequency, co-occurrences, and network analysis to identify important substances and substance clusters.

Results: The named-entity recognition algorithm achieved an F1 score of 0.67. A total of 28,447 substance entities and 5789 word co-occurrence pairs were extracted. “Histamine antagonists,” “famotidine,” “magnesium,” “vitamins,” and “steroids” were the most frequently mentioned substances. Network analysis revealed three clusters of substances, indicating certain medication patterns.

Conclusions: This feasibility study indicates that network analysis can be used to characterize the medication strategies discussed in social media. Comparison with existing literature shows that this approach identifies substances that are promising candidates for drug repurposing, such as antihistamines, steroids, or antidepressants. In the context of a pandemic, the proposed method could be used to support drug repurposing hypothesis development by prioritizing substances that are important to users.

Source: Koss J, Bohnet-Joschko S. Social Media Mining of Long-COVID Self-Medication Reported by Reddit Users: Feasibility Study to Support Drug Repurposing. JMIR Form Res. 2022 Oct 3;6(10):e39582. doi: 10.2196/39582. PMID: 36007131; PMCID: PMC9531770. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531770/ (Full text)

Long-COVID Syndrome and the Cardiovascular System: A Review of Neurocardiologic Effects on Multiple Systems

Abstract:

Purpose of review: Long-COVID syndrome is a multi-organ disorder that persists beyond 12 weeks post-acute SARS-CoV-2 infection (COVID-19). Here, we provide a definition for this syndrome and discuss neuro-cardiology involvement due to the effects of (1) angiotensin-converting enzyme 2 receptors (the entry points for the virus), (2) inflammation, and (3) oxidative stress (the resultant effects of the virus).

Recent findings: These effects may produce a spectrum of cardio-neuro effects (e.g., myocardial injury, primary arrhythmia, and cardiac symptoms due to autonomic dysfunction) which may affect all systems of the body. We discuss the symptoms and suggest therapies that target the underlying autonomic dysfunction to relieve the symptoms rather than merely treating symptoms. In addition to treating the autonomic dysfunction, the therapy also treats chronic inflammation and oxidative stress. Together with a full noninvasive cardiac workup, a full assessment of the autonomic nervous system, specifying parasympathetic and sympathetic (P&S) activity, both at rest and in response to challenges, is recommended. Cardiac symptoms must be treated directly. Cardiac treatment is often facilitated by treating the P&S dysfunction. Cardiac symptoms of dyspnea, chest pain, and palpitations, for example, need to be assessed objectively to differentiate cardiac from neural (autonomic) etiology. Long-term myocardial injury commonly involves P&S dysfunction. P&S assessment usually connects symptoms of Long-COVID to the documented autonomic dysfunction(s).

Source: DePace NL, Colombo J. Long-COVID Syndrome and the Cardiovascular System: A Review of Neurocardiologic Effects on Multiple Systems. Curr Cardiol Rep. 2022 Sep 30:1–16. doi: 10.1007/s11886-022-01786-2. Epub ahead of print. PMID: 36178611; PMCID: PMC9524329.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524329/ (Full text)

Gut Microbiota Dynamics in Relation to Long-COVID-19 Syndrome: Role of Probiotics to Combat Psychiatric Complications

Increasing numbers of patients who recover from COVID-19 report lasting symptoms, such as fatigue, muscle weakness, dementia, and insomnia, known collectively as post-acute COVID syndrome or long COVID. These lasting symptoms have been examined in different studies and found to influence multiple organs, sometimes resulting in life-threating conditions.
In this review, these symptoms are discussed in connection to the COVID-19 and long-COVID-19 immune changes, highlighting oral and psychiatric health, as this work focuses on the gut microbiota’s link to long-COVID-19 manifestations in the liver, heart, kidney, brain, and spleen. A model of this is presented to show the biological and clinical implications of gut microbiota in SARS-CoV-2 infection and how they could possibly affect the therapeutic aspects of the disease. Probiotics can support the body’s systems in fighting viral infections. This review focuses on current knowledge about the use of probiotics as adjuvant therapies for COVID-19 patients that might help to prevent long-COVID-19 complications.
Source: Alenazy MF, Aljohar HI, Alruwaili AR, Daghestani MH, Alonazi MA, Labban RS, El-Ansary AK, Balto HA. Gut Microbiota Dynamics in Relation to Long-COVID-19 Syndrome: Role of Probiotics to Combat Psychiatric Complications. Metabolites. 2022; 12(10):912. https://doi.org/10.3390/metabo12100912 (Full text)