Lessons From Heat Stroke for Understanding Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Introduction:

We here provide an overview of the pathophysiological mechanisms during heat stroke and describe similar mechanisms found in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Both conditions are characterized by disturbed homeostasis in which inflammatory pathways play a central role. Splanchnic vasoconstriction, increased gut permeability, gut-related endotoxemia, systemic inflammatory response, central nervous system dysfunction, blood coagulation disorder, endothelial-cell injury, and mitochondrial dysfunction underlie heat stroke. These mechanisms have also been documented in ME/CFS.

Moreover, initial transcriptomic studies suggest that similar gene expressions are altered in both heat stroke and ME/CFS. Finally, some predisposing factors for heat stroke, such as pre-existing inflammation or infection, overlap with those for ME/CFS. Notwithstanding important differences – and despite heat stroke being an acute condition – the overlaps between heat stroke and ME/CFS suggest common pathways in the physiological responses to very different forms of stressors, which are manifested in different clinical outcomes. The human studies and animal models of heat stroke provide an explanation for the self-perpetuation of homeostatic imbalance centered around intestinal wall injury, which could also inform the understanding of ME/CFS. Moreover, the studies of novel therapeutics for heat stroke might provide new avenues for the treatment of ME/CFS. Future research should be conducted to investigate the similarities between heat stroke and ME/CFS to help identify the potential treatments for ME/CFS.

Source: Dominic Stanculescu, Nuno Sepúlveda, Chin Leong Lim and Jonas Bergquist. Lessons From Heat Stroke for Understanding Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front. Neurol., 13 December 2021 | https://doi.org/10.3389/fneur.2021.789784  https://www.frontiersin.org/articles/10.3389/fneur.2021.789784/full (Full text)

The reification of the clinical diagnosis of myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) as an immune and oxidative stress disorder: construction of a data-driven nomothethic network and exposure of ME/CFS subgroups

Abstract:

The approach towards myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) remains in a permanent state of crisis with fierce competition between the psychosocial school, which attributes ME/CFS to the perception of effort, and the medical approach (Maes and Twisk, BMC Med, 2010,8,35). The aim of this paper is to review how to construct a nomothetic model of ME/CFS using Partial Least Squares (PLS) path analysis and ensembling causome (bacterial translocation as assessed with IgM/IgA responses to LPS), protectome (lowered coenzyme Q10), adverse outcome pathways (AOP) including increased lysozyme, CD38+ T cell activation, cell-mediated immune activation (CMI), and IgM responses to oxidative specific epitopes and NO-adducts (IgM OSENO).

Using PLS, we trained, tested and validated this knowledge- and data-driven causal ME/CFS model, which showed adequate convergence, construct and replicability validity. This bottom-up explicit data model of ME/CFS objectivates the descriptive narratives of the ME/CFS phenome, using causome-protectome-AOP data, whereby the abstract concept ME/CFS is translated into pathways, thereby securing the reification of the ME/CFS phenome.

We found that 31.6% of the variance in the physiosomatic symptom dimension of ME/CFS was explained by the cumulative effects of CMI and CD38+ activation, IgM OSENO, IgA LPS, lysozyme (all positive) and coenzyme Q10 (inversely). Cluster analysis performed on the PLS-generated latent vector scores of all feature sets exposed three distinct immune groups of ME/CFS, namely one with increased lysozyme, one with increased CMI + CD38 activation + depressive symptoms, and another with increased bacterial translocation + autoimmune responses to OSENO

Source: Maes M, Kubera M, Stoyanova K, Leunis JC. The reification of the clinical diagnosis of myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) as an immune and oxidative stress disorder: construction of a data-driven nomothethic network and exposure of ME/CFS subgroups. Curr Top Med Chem. 2021 Jul 27. doi: 10.2174/1568026621666210727170147. Epub ahead of print. PMID: 34315375. https://pubmed.ncbi.nlm.nih.gov/34315375/

Endothelial Senescence and Chronic Fatigue Syndrome, a COVID-19 Based Hypothesis

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome is a serious illness of unknown etiology, characterized by debilitating exhaustion, memory impairment, pain and sleep abnormalities. Viral infections are believed to initiate the pathogenesis of this syndrome although the definite proof remains elusive. With the unfolding of COVID-19 pandemic, the interest in this condition has resurfaced as excessive tiredness, a major complaint of patients infected with the SARS-CoV-2 virus, often lingers for a long time, resulting in disability, and poor life quality.

In a previous article, we hypothesized that COVID-19-upregulated angiotensin II triggered premature endothelial cell senescence, disrupting the intestinal and blood brain barriers. Here, we hypothesize further that post-viral sequelae, including myalgic encephalomyelitis/chronic fatigue syndrome, are promoted by the gut microbes or toxin translocation from the gastrointestinal tract into other tissues, including the brain. This model is supported by the SARS-CoV-2 interaction with host proteins and bacterial lipopolysaccharide. Conversely, targeting microbial translocation and cellular senescence may ameliorate the symptoms of this disabling illness.

Source: Sfera A, Osorio C, Zapata Martín Del Campo CM, Pereida S, Maurer S, Maldonado JC, Kozlakidis Z. Endothelial Senescence and Chronic Fatigue Syndrome, a COVID-19 Based Hypothesis. Front Cell Neurosci. 2021 Jun 25;15:673217. doi: 10.3389/fncel.2021.673217. PMID: 34248502; PMCID: PMC8267916. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267916/ (Full study)

Recognizing the leaky gut as a trans-diagnostic target for neuro-immune disorders using clinical chemistry and molecular immunology assays

Abstract:

BACKGROUND: Increased intestinal permeability with heightened translocation of Gram-negative bacteria, also known as “leaky gut”, is associated with the pathophysiology of neuroimmune disorders, such as major depressive disorder (MDD), chronic fatigue syndrome (CSF) and (deficit) schizophrenia, as well as with general medical disorders, including irritable bowel syndrome. This review aims to summarize clinical biochemistry and molecular immunology tests that may aid in the recognition of leaky gut in clinical practice.

METHODS: We searched online libraries, including PubMed/MEDLINE, Google Scholar and Scopus, with the key words “diagnosis” or “biomarkers” and “leaky gut”, “bacterial translocation”, and “intestinal permeability” and focused on papers describing tests that may aid in the clinical recognition of leaky gut.

RESULTS: To evaluate tight junction barrier integrity, serum IgG/IgA/IgM responses to occludin and zonulin and IgA responses to actomyosin should be evaluated. The presence of cytotoxic bacterial products in serum can be evaluated using IgA/IgM responses to sonicated samples of common Gram-negative gut commensal bacteria and assays of serum lipopolysaccharides (LPSs) and other bacterial toxins, including cytolethal distenting toxin, subunit B. Major factors associated with increased gut permeability, including gut dysbiosis and yeast overgrowth, use of NSAIDs and alcohol, food hypersensitivities (IgE-mediated), food intolerances (IgG-mediated), small bacterial overgrowth (SIBO), systemic inflammation, psychosocial stressors, some infections (e.g., HIV) and dietary patterns, should be assessed. Stool samples can be used to assay gut dysbiosis, gut inflammation and decreased mucosal defenses using assays of fecal growth of bacteria, yeast and fungi and stool assays of calprotectin, secretory IgA, β-defensin, α-antitrypsin, lysozyme and lactoferrin. Blood and breath tests should be used to exclude common causes of increased gut permeability, namely, food hypersensitivities and intolerances, SIBO, lactose intolerance and fructose malabsorption.

DISCUSSION: Here, we propose strategies to recognize “leaky gut” in a clinical setting using the most adequate clinical chemistry and molecular immunology assays.

Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

Source: Simeonova D, Ivanovska M, Murdjeva M, Carvalho AF, Maes M. Recognizing the leaky gut as a trans-diagnostic target for neuro-immune disorders using clinical chemistry and molecular immunology assays. Curr Top Med Chem. 2018 Nov 14. doi: 10.2174/1568026618666181115100610. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/30430944

Chronic fatigue syndrome is in your gut, not your head

Physicians have been mystified by chronic fatigue syndrome, a condition where normal exertion leads to debilitating fatigue that isn’t alleviated by rest. There are no known triggers, and diagnosis requires lengthy tests administered by an expert.

Now, for the first time, Cornell University researchers report they have identified biological markers of the disease in gut bacteria and inflammatory microbial agents in the blood.

In a study published June 23 in the journal Microbiome, the team describes how they correctly diagnosed myalgic encephalomyeletis/chronic fatigue syndrome (ME/CFS) in 83 percent of patients through stool samples and blood work, offering a noninvasive diagnosis and a step toward understanding the cause of the disease.

“Our work demonstrates that the gut bacterial microbiome in chronic fatigue syndrome patients isn’t normal, perhaps leading to gastrointestinal and inflammatory symptoms in victims of the disease,” said Maureen Hanson, the Liberty Hyde Bailey Professor in the Department of Molecular Biology and Genetics at Cornell and the paper’s senior author. “Furthermore, our detection of a biological abnormality provides further evidence against the ridiculous concept that the disease is psychological in origin.”

“In the future, we could see this technique as a complement to other noninvasive diagnoses, but if we have a better idea of what is going on with these gut microbes and patients, maybe clinicians could consider changing diets, using prebiotics such as dietary fibers or probiotics to help treat the disease,” said Ludovic Giloteaux, a postdoctoral researcher and first author of the study.

In the study, Ithaca campus researchers collaborated with Dr. Susan Levine, an ME/CFS specialist in New York City, who recruited 48 people diagnosed with ME/CFS and 39 healthy controls to provide stool and blood samples.

The researchers sequenced regions of microbial DNA from the stool samples to identify different types of bacteria. Overall, the diversity of types of bacteria was greatly reduced and there were fewer bacterial species known to be anti-inflammatory in ME/CFS patients compared with healthy people, an observation also seen in people with Crohn’s disease and ulcerative colitis.

At the same time, the researchers discovered specific markers of inflammation in the blood, likely due to a leaky gut from intestinal problems that allow bacteria to enter the blood, Giloteaux said.

Bacteria in the blood will trigger an immune response, which could worsen symptoms.

The researchers have no evidence to distinguish whether the altered gut microbiome is a cause or a whether it is a consequence of disease, Giloteaux added.

In the future, the research team will look for evidence of viruses and fungi in the gut, to see whether one of these or an association of these along with bacteria may be causing or contributing to the illness.

 

Journal Reference: Ludovic Giloteaux, Julia K. Goodrich, William A. Walters, Susan M. Levine, Ruth E. Ley, Maureen R. Hanson. Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome, 2016; 4 (1) DOI: 10.1186/s40168-016-0171-4

 

Source: Cornell University. “Chronic fatigue syndrome is in your gut, not your head.” ScienceDaily. ScienceDaily, 27 June 2016. https://www.sciencedaily.com/releases/2016/06/160627160939.htm

 

The Role of Microbiota and Intestinal Permeability in the Pathophysiology of Autoimmune and Neuroimmune Processes with an Emphasis on Inflammatory Bowel Disease Type 1 Diabetes and Chronic Fatigue Syndrome

Abstract:

BACKGROUND: In steady state conditions intestinal immune homeostasis is maintained by a sophisticated bidirectional dialogue between the microbiota and the intestinal immune system. This “cross talk” is enabled by the presence of highly adapted secretory cells, sampling cells and pattern recognition receptors in the gastric epithelium.

METHODS: Herein we discuss the mechanisms involved in the breakdown of intestinal homeostasis and the development of systemic immune activation and neuroinflammation with a view to discussing the importance of these processes, in tandem with genetic and environmental factors, in the pathophysiology of (auto)immune diseases.Data is presented explaining how immune tolerance is maintained and how it may breakdown.

CONCLUSION: The breakdown of immune homeostasis following the development of gut inflammation, caused for example by gut dysbiosis, and the consequent increased intestinal permeability, is increasingly considered to be the ultimate source of the systemic immune activation and T helper 17/T regulatory cell imbalances, and maybe neurological disturbances, seen in autoimmune diseases such as Type 1 diabetes and inflammatory bowel disease. Increased intestinal permeability and translocation of commensal antigens into the systemic circulation is also a likely cause of the severe fatigue and an almost bewildering range of neurocognitive, neuroimaging and overall symptom presentations seen in patients with a diagnosis of Chronic Fatigue Syndrome.

 

Source: Morris G, Berk M, Carvalho AF, Caso JR, Sanz Y, Maes M. The Role of Microbiota and Intestinal Permeability in the Pathophysiology of Autoimmune and Neuroimmune Processes with an Emphasis on Inflammatory Bowel Disease Type 1 Diabetes and Chronic Fatigue Syndrome. Curr Pharm Des. 2016;22(40):6058-6075. https://www.ncbi.nlm.nih.gov/pubmed/27634186

 

A new case definition of Neuro-Inflammatory and Oxidative Fatigue (NIOF), a neuroprogressive disorder, formerly known as chronic fatigue syndrome or Myalgic Encephalomyelitis: results of multivariate pattern recognition methods and external validation by neuro-immune biomarkers

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) or Myalgic Encephalomyelitis (ME) is characterized by neuro-psychiatric (e.g. depression, irritability, sleep disorders, autonomic symptoms and neurocognitive defects) and physio-somatic (fatigue, a flu-like malaise, hyperalgesia, irritable bowel, muscle pain and tension) symptoms. New ME/CFS case definitions based on consensus criteria among experts are largely inadequate, e.g. those of the US Institute of Medicine .

OBJECTIVES: The aim of the present study was to delineate a new case definition of ME/CFS based on pattern recognition methods and using neuro-immune, inflammatory, oxidative and nitrosative stress (neuro-IO&NS) biomarkers as external validating criteria.

METHODS: We measured the 12-item Fibromyalgia and Chronic Fatigue Syndrome Rating (FF) Scale in 196 subjects with CFS (CDC criteria) and 83 with chronic fatigue. The “Neuro-IO&NS” biomarkers were: IgM / IgA responses against LPS of gut commensal bacteria (leaky gut), IgM responses to O&NS modified neoepitopes, autoimmunity to serotonin, plasma interleukin-1 (IL-1) and serum neopterin.

RESULTS: Cluster analysis showed the presence of two well-separated clusters with highly significant differences in symptoms and biomarkers. The cluster with higher scores on all FF items was externally validated against all IO&NS biomarkers and therefore this diagnostic group was labeled “Neuro-IO&NS Fatigue” or “Neuro-Inflammatory and Oxidative Fatigue” (NIOF). An algorithm was constructed which defined NIOF as chronic fatigue and 4 or more of the following 6 symptoms: muscle tension, memory disturbances, sleep disorders, irritable bowel, headache or a flu-like malaise. There was a significant overlap between NIOF and CFS although NIOF criteria were much more restrictive. Factor analysis showed two factors, the first a fatigue-hyperalgesia (fibromyalgic complaints) and the second a fatigue-depression factor.

 

Source: Maes M. A new case definition of Neuro-Inflammatory and Oxidative Fatigue (NIOF), a neuroprogressive disorder, formerly known as chronic fatigue syndrome or Myalgic Encephalomyelitis: results of multivariate pattern recognition methods and external validation by neuro-immune biomarkers. Neuro Endocrinol Lett. 2015;36(4):320-9. https://www.ncbi.nlm.nih.gov/pubmed/26454487

 

Evidence for the existence of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) with and without abdominal discomfort (irritable bowel) syndrome

Abstract:

BACKGROUND: There is evidence that Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is accompanied by gastro-intestinal symptoms; and IgA and IgM responses directed against lipopolysaccharides (LPS) of commensal bacteria, indicating bacterial translocation.

METHODS: This study was carried out to examine gastro-intestinal symptoms in subjects with ME/CFS versus those with chronic fatigue (CF). The two groups were dissected by dichotomizing those fulfilling and not fulfilling Fukuda’s critera. In these groups, we examined the association between gastro-intestinal symptoms and the IgA and IgM responses directed against commensal bacteria.

RESULTS: Using cluster analysis performed on gastro-intestinal symptoms we delineated that the cluster analysis-generated diagnosis of abdominal discomfort syndrome (ADS) was significantly higher in subjects with ME/CFS (59.6%) than in those with CF (17.7%). The diagnosis of ADS was strongly associated with the diagnosis of irritable bowel syndrome (IBS). There is evidence that ME/CFS consists of two subgroups, i.e. ME/CFS with and without ADS. Factor analysis showed four factors, i.e. 1) inflammation-hyperalgesia; 2) fatigue-malaise; 3) gastro-intestinal symptoms/ADS; and 4) neurocognitive symptoms. The IgA and IgM responses to LPS of commensal bacteria were significantly higher in ME/CFS patients with ADS than in those without ADS.

CONCLUSIONS: The findings show that ADS is a characteristic of a subset of patients with ME/CFS and that increased bacterial translocation (leaky gut) is associated with ADS symptoms. This study has defined a pathway phenotype, i.e bacterial translocation, that is related to ME/CFS and ADS/IBS and that may drive systemic inflammatory processes.

 

Source: Maes M, Leunis JC, Geffard M, Berk M. Evidence for the existence of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) with and without abdominal discomfort (irritable bowel) syndrome. Neuro Endocrinol Lett. 2014;35(6):445-53. https://www.ncbi.nlm.nih.gov/pubmed/25433843

 

Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome

Abstract:

BACKGROUND: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is accompanied by a) systemic IgA/IgM responses against the lipopolysaccharides (LPS) of commensal bacteria; b) inflammation, e.g. increased plasma interleukin-(IL)1 and tumor necrosis factor (TNF)α; and c) activation of cell-mediated immunity (CMI), as demonstrated by increased neopterin.

METHODS: To study the relationships between the IgA/IgM responses to the LPS of microbiota, inflammation, CMI and the symptoms of ME/CFS we measured the IgA/IgM responses to the LPS of 6 different enterobacteria, serum IL-1, TNFα, neopterin, and elastase in 128 patients with ME/CFS and chronic fatigue (CF). Severity of symptoms was assessed by the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale.

RESULTS: Serum IL-1, TNFα, neopterin and elastase are significantly higher in patients with ME/CFS than in CF patients. There are significant and positive associations between the IgA responses to LPS and serum IL-1, TNFα, neopterin and elastase. Patients with an abnormally high IgA response show increased serum IL-1, TNFα and neopterin levels, and higher ratings on irritable bowel syndrome (IBS) than subjects with a normal IgA response. Serum IL-1, TNFα and neopterin are significantly related to fatigue, a flu-like malaise, autonomic symptoms, neurocognitive disorders, sadness and irritability.

CONCLUSIONS: The findings show that increased IgA responses to commensal bacteria in ME/CFS are associated with inflammation and CMI activation, which are associated with symptom severity. It is concluded that increased translocation of commensal bacteria may be responsible for the disease activity in some ME/CFS patients.

Copyright © 2011 Elsevier B.V. All rights reserved.

 

Source: Maes M, Twisk FN, Kubera M, Ringel K, Leunis JC, Geffard M. Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. J Affect Disord. 2012 Feb;136(3):909-17. doi: 10.1016/j.jad.2011.09.010. Epub 2011 Oct 2. https://www.ncbi.nlm.nih.gov/pubmed/21967891

 

Gut inflammation in chronic fatigue syndrome

Abstract:

Chronic fatigue syndrome (CFS) is a debilitating disease characterized by unexplained disabling fatigue and a combination of accompanying symptoms the pathology of which is incompletely understood.

Many CFS patients complain of gut dysfunction. In fact, patients with CFS are more likely to report a previous diagnosis of irritable bowel syndrome (IBS), a common functional disorder of the gut, and experience IBS-related symptoms. Recently, evidence for interactions between the intestinal microbiota, mucosal barrier function, and the immune system have been shown to play a role in the disorder’s pathogenesis.

Studies examining the microecology of the gastrointestinal (GI) tract have identified specific microorganisms whose presence appears related to disease; in CFS, a role for altered intestinal microbiota in the pathogenesis of the disease has recently been suggested. Mucosal barrier dysfunction promoting bacterial translocation has also been observed. Finally, an altered mucosal immune system has been associated with the disease.

In this article, we discuss the interplay between these factors in CFS and how they could play a significant role in GI dysfunction by modulating the activity of the enteric nervous system, the intrinsic innervation of the gut. If an altered intestinal microbiota, mucosal barrier dysfunction, and aberrant intestinal immunity contribute to the pathogenesis of CFS, therapeutic efforts to modify gut microbiota could be a means to modulate the development and/or progression of this disorder.

For example, the administration of probiotics could alter the gut microbiota, improve mucosal barrier function, decrease pro-inflammatory cytokines, and have the potential to positively influence mood in patients where both emotional symptoms and inflammatory immune signals are elevated. Probiotics also have the potential to improve gut motility, which is dysfunctional in many CFS patients.

 

Source: Lakhan SE, Kirchgessner A. Gut inflammation in chronic fatigue syndrome. Nutr Metab (Lond). 2010 Oct 12;7:79. doi: 10.1186/1743-7075-7-79. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964729/ (Full article)