Understanding the economic impact of myalgic encephalomyelitis/chronic fatigue syndrome in Ireland: a qualitative study

Abstract:

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling and complex chronic disease of unknown origin, whose symptoms, severity, and progression are extremely variable. Despite being relatively common, the condition is poorly understood and routine diagnostic tests and biomarkers are unavailable. There is no evidence on the economic impact of ME/CFS in Ireland.

Methods: Adopting a patient and public involvement approach, we undertook three semi-structured focus groups, which together included 15 ME/CFS patients and 6 informal carers, to consider costs related to ME/CFS in Ireland, including how and why they arise. Focus groups were audio-recorded and transcribed verbatim, and we employed thematic analysis following the approach set out in Braun and Clarke (2006).

Results: Themes from the data were: (1) Healthcare barriers and costs; (2) Socioeconomic costs; (3) Costs of disability; and, (4) Carer-related costs. Patient participants described a range of barriers to effective healthcare that led to extra costs, including delays getting a diagnosis, poor awareness/understanding of the condition by healthcare professionals, and a lack of effective treatments. These were linked to poor prognosis of the illness by participants who, as a result, faced a range of indirect costs, including poorer labour market and education outcomes, and lower economic well-being. Direct extra costs of disability were also described, often due to difficulties accessing appropriate services and supports. Informal carer participants described a range of impacts, including time costs, burnout, and impacts on work and study.

Conclusions: The data suggests that ME/CFS patients face a wide range of costs, while there are also wider societal costs in the form of costs to the health service, lost productivity, and impacts on informal carers. These results will inform ongoing research that aims to quantify the economic burden of ME/CFS in Ireland and raise awareness of the illness amongst healthcare providers and policymakers.

Source: Cullinan J, Ní Chomhraí O, Kindlon T, Black L, Casey B. Understanding the economic impact of myalgic encephalomyelitis/chronic fatigue syndrome in Ireland: a qualitative study. HRB Open Res. 2020 Dec 4;3:88. doi: 10.12688/hrbopenres.13181.1. PMID: 33659857; PMCID: PMC7898356. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898356/ (Full text)

Monitoring treatment harm in myalgic encephalomyelitis/chronic fatigue syndrome: A freedom-of-information study of National Health Service specialist centres in England

Abstract:

The use of graded exercise therapy and cognitive behavioural therapy for myalgic encephalomyelitis/chronic fatigue syndrome has attracted considerable controversy. This controversy relates not only to the disputed evidence for treatment efficacy but also to widespread reports from patients that graded exercise therapy, in particular, has caused them harm. We surveyed the National Health Service-affiliated myalgic encephalomyelitis/chronic fatigue syndrome specialist clinics in England to assess how harms following treatment are detected and to examine how patients are warned about the potential for harms.

We sent 57 clinics standardised information requests under the United Kingdom’s Freedom of Information Act. Data were received from 38 clinics. Clinics were highly inconsistent in their approaches to the issue of treatment-related harm. They placed little or no focus on the potential for treatment-related harm in their written information for patients and for staff. Furthermore, no clinic reported any cases of treatment-related harm, despite acknowledging that many patients dropped out of treatment.

In light of these findings, we recommend that clinics develop standardised protocols for anticipating, recording, and remedying harms, and that these protocols allow for therapies to be discontinued immediately whenever harm is identified.

Source: McPhee G, Baldwin A, Kindlon T, Hughes BM. Monitoring treatment harm in myalgic encephalomyelitis/chronic fatigue syndrome: A freedom-of-information study of National Health Service specialist centres in England. J Health Psychol. 2019 Jun 24:1359105319854532. doi: 10.1177/1359105319854532. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/31234662

Response: Sharpe, Goldsmith and Chalder fail to restore confidence in the PACE trial findings

Abstract:

In a recent paper, we argued that the conclusions of the PACE trial of chronic fatigue syndrome are problematic because the pre-registered protocol was not adhered to. We showed that when the originally specific outcomes and analyses are used, the evidence for the effectiveness of CBT and graded exercise therapy is weak.

In a companion paper to this article, Sharpe, Goldsmith and Chalder dismiss the concerns we raised and maintain that the original conclusions are robust. In this rejoinder, we clarify one misconception in their commentary, and address seven additional arguments they raise in defence of their conclusions.

We conclude that none of these arguments is sufficient to justify digressing from the pre-registered trial protocol. Specifically, the PACE authors view the trial protocol as a preliminary plan, subject to honing and improvement as time progresses, whereas we view it as a contract that should not be broken except in extremely unusual circumstances. While the arguments presented by Sharpe and colleagues inspire some interesting reflections on the scientific process, they fail to restore confidence in the PACE trial’s conclusions.

Source: Carolyn E. Wilshire and Tom Kindlon. Response: Sharpe, Goldsmith and Chalder fail to restore confidence in the PACE trial findings. BMC Psychology20197:19
https://doi.org/10.1186/s40359-019-0296-x© The Author(s). 2019 https://bmcpsychology.biomedcentral.com/articles/10.1186/s40359-019-0296-x (Full article)

Rethinking the treatment of chronic fatigue syndrome—a reanalysis and evaluation of findings from a recent major trial of graded exercise and CBT

Abstract:

Background: The PACE trial was a well-powered randomised trial designed to examine the efficacy of graded exercise therapy (GET) and cognitive behavioural therapy (CBT) for chronic fatigue syndrome. Reports concluded that both treatments were moderately effective, each leading to recovery in over a fifth of patients. However, the reported analyses did not consistently follow the procedures set out in the published protocol, and it is unclear whether the conclusions are fully justified by the evidence.

Methods: Here, we present results based on the original protocol-specified procedures. Data from a recent Freedom of Information request enabled us to closely approximate these procedures. We also evaluate the conclusions from the trial as a whole.

Results: On the original protocol-specified primary outcome measure – overall improvement rates – there was a significant effect of treatment group. However, the groups receiving CBT or GET did not significantly outperform the Control group after correcting for the number of comparisons specified in the trial protocol. Also, rates of recovery were consistently low and not significantly different across treatment groups. Finally, on secondary measures, significant effects were almost entirely confined to self-report measures. These effects did not endure beyond two years.

Conclusions: These findings raise serious concerns about the robustness of the claims made about the efficacy of CBT and GET. The modest treatment effects obtained on self-report measures in the PACE trial do not exceed what could be reasonably accounted for by participant reporting biases.

Source: Carolyn E. Wilshire, Tom Kindlon, Robert Courtney, Alem Matthees, David Tuller, Keith Geraghty and Bruce Levin. Rethinking the treatment of chronic fatigue syndrome—a reanalysis and evaluation of findings from a recent major trial of graded exercise and CBT. BMC PsychologyBMC series. Received: 29 May 2017; Accepted: 22 February 2018; Published: 22 March 2018.  https://doi.org/10.1186/s40359-018-0218-3 (Full article) © The Author(s) 2018.

Do graded activity therapies cause harm in chronic fatigue syndrome?

Abstract:

Reporting of harms was much better in the PACE (Pacing, graded Activity, and Cognitive behavioural therapy: a randomised Evaluation) trial than earlier chronic fatigue syndrome trials of graded exercise therapy and cognitive behavioural therapy. However, some issues remain. The trial’s poor results on objective measures of fitness suggest a lack of adherence to the activity component of these therapies. Therefore, the safety findings may not apply in other clinical contexts. Outside of clinical trials, many patients report deterioration with cognitive behavioural therapy and particularly graded exercise therapy. Also, exercise physiology studies reveal abnormalities in chronic fatigue syndrome patients’ responses to exertion. Given these considerations, one cannot conclude that these interventions are safe and risk-free.

Source: Kindlon T. Do graded activity therapies cause harm in chronic fatigue syndrome? J Health Psychol. 2017 Aug;22(9):1146-1154. doi: 10.1177/1359105317697323. Epub 2017 Mar 20. https://www.ncbi.nlm.nih.gov/pubmed/28805516

Do graded activity therapies cause harm in chronic fatigue syndrome?

Abstract:

Reporting of harms was much better in the PACE (Pacing, graded Activity, and Cognitive behavioural therapy: a randomised Evaluation) trial than earlier chronic fatigue syndrome trials of graded exercise therapy and cognitive behavioural therapy. However, some issues remain. The trial’s poor results on objective measures of fitness suggest a lack of adherence to the activity component of these therapies. Therefore, the safety findings may not apply in other clinical contexts. Outside of clinical trials, many patients report deterioration with cognitive behavioural therapy and particularly graded exercise therapy. Also, exercise physiology studies reveal abnormalities in chronic fatigue syndrome patients’ responses to exertion. Given these considerations, one cannot conclude that these interventions are safe and risk-free.

 

Source: Tom Kindlon. Do graded activity therapies cause harm in chronic fatigue syndrome? Journal of Health Psychology. March 20, 2017. http://journals.sagepub.com/doi/full/10.1177/1359105317697323 (Full article)

 

Can patients with chronic fatigue syndrome really recover after graded exercise or cognitive behavioural therapy? A critical commentary and preliminary re-analysis of the PACE trial

Abstract:

BACKGROUND: Publications from the PACE trial reported that 22% of chronic fatigue syndrome patients recovered following graded exercise therapy (GET), and 22% following a specialised form of CBT. Only 7% recovered in a control, no-therapy group. These figures were based on a definition of recovery that differed markedly from that specified in the trial protocol.

PURPOSE: To evaluate whether these recovery claims are justified by the evidence.

METHODS: Drawing on relevant normative data and other research, we critically examine the researchers’ definition of recovery, and whether the late changes they made to this definition were justified. Finally, we calculate recovery rates based on the original protocol-specified definition.

RESULTS: None of the changes made to PACE recovery criteria were adequately justified. Further, the final definition was so lax that on some criteria, it was possible to score below the level required for trial entry, yet still be counted as ‘recovered’. When recovery was defined according to the original protocol, recovery rates in the GET and CBT groups were low and not significantly higher than in the control group (4%, 7% and 3%, respectively).

CONCLUSIONS: The claim that patients can recover as a result of CBT and GET is not justified by the data, and is highly misleading to clinicians and patients considering these treatments.

 

Source: Carolyn Wilshire, Tom Kindlon, Alem Matthees & Simon McGrath. Can patients with chronic fatigue syndrome really recover after graded exercise or cognitive behavioural therapy? A critical commentary and preliminary re-analysis of the PACE trial. Fatigue: Biomedicine, Health & Behavior Volume 5, 2017 – Issue 1. http://www.tandfonline.com/doi/full/10.1080/21641846.2017.1259724 (Full article)

 

PACE trial claims of recovery are not justified by the data: a rejoinder to Sharpe, Chalder, Johnson, Goldsmith and White (2017)

Abstract:

Background: Recently, we critically evaluated the claim from the PACE trial that cognitive behavioural therapy (CBT) and graded exercise therapy (GET) can lead to recovery from chronic fatigue syndrome (CFS). We showed that the trial’s definition of recovery was so loose it failed to capture the term’s core meaning. Also, this definition was substantially loosened very late in the trial, in ways that favoured the study hypotheses. The investigators do not acknowledge any of these criticisms and stand by their original analyses.

Purpose: To examine the arguments advanced in defence of PACE’s recovery claims.

Methods: Drawing on various sources of evidence, we consider three major arguments raised in defence of PACE’s recovery claims: (1) that since there is no agreed definition of recovery, it comes down to a matter of opinion; (2) that the original definition was ‘too stringent’; and (3) the revised definition generates results that align with previous studies.

Results: We find that: (1) ‘recovery’ is a strong claim, which implies evidence a return to health, and that the trial’s final definition did not preserve this core meaning; (2) there is no evidence to suggest that the original protocol-specified definition was ‘too stringent’; (3) absolute recovery rates from other studies are not a legitimate source of support for the recovery definition used.

Conclusions: The PACE trial provides no evidence that CBT and GET can lead to recovery from CFS. The recovery claims made in the PACE trial are therefore misleading for patients and clinicians.

 

Source: Carolyn Wilshire, Tom Kindlon & Simon McGrath. PACE trial claims of recovery are not justified by the data: a rejoinder to Sharpe, Chalder, Johnson, Goldsmith and White (2017). Fatigue: Biomedicine, Health & Behavior. Volume 5, 2017 – Issue 1. http://www.tandfonline.com/doi/full/10.1080/21641846.2017.1299358

 

Exercise therapy for chronic fatigue syndrome

Update in

Abstract:

BACKGROUND: Chronic fatigue syndrome (CFS) is characterised by persistent, medically unexplained fatigue, as well as symptoms such as musculoskeletal pain, sleep disturbance, headaches and impaired concentration and short-term memory. CFS presents as a common, debilitating and serious health problem. Treatment may include physical interventions, such as exercise therapy, which was last reviewed in 2004.

OBJECTIVES: The objective of this review was to determine the effects of exercise therapy (ET) for patients with CFS as compared with any other intervention or control.• Exercise therapy versus ‘passive control’ (e.g. treatment as usual, waiting-list control, relaxation, flexibility).• Exercise therapy versus other active treatment (e.g. cognitive-behavioural therapy (CBT), cognitive treatment, supportive therapy, pacing, pharmacological therapy such as antidepressants).• Exercise therapy in combination with other specified treatment strategies versus other specified treatment strategies (e.g. exercise combined with pharmacological treatment vs pharmacological treatment alone).

SEARCH METHODS: We searched The Cochrane Collaboration Depression, Anxiety and Neurosis Controlled Trials Register (CCDANCTR), the Cochrane Central Register of Controlled Trials (CENTRAL) and SPORTDiscus up to May 2014 using a comprehensive list of free-text terms for CFS and exercise. We located unpublished or ongoing trials through the World Health Organization (WHO) International Clinical Trials Registry Platform (to May 2014). We screened reference lists of retrieved articles and contacted experts in the field for additional studies

SELECTION CRITERIA: Randomised controlled trials involving adults with a primary diagnosis of CFS who were able to participate in exercise therapy. Studies had to compare exercise therapy with passive control, psychological therapies, adaptive pacing therapy or pharmacological therapy.

DATA COLLECTION AND ANALYSIS: Two review authors independently performed study selection, risk of bias assessments and data extraction. We combined continuous measures of outcomes using mean differences (MDs) and standardised mean differences (SMDs). We combined serious adverse reactions and drop-outs using risk ratios (RRs). We calculated an overall effect size with 95% confidence intervals (CIs) for each outcome.

MAIN RESULTS: We have included eight randomised controlled studies and have reported data from 1518 participants in this review. Three studies diagnosed individuals with CFS using the 1994 criteria of the Centers for Disease Control and Prevention (CDC); five used the Oxford criteria. Exercise therapy lasted from 12 to 26 weeks. Seven studies used variations of aerobic exercise therapy such as walking, swimming, cycling or dancing provided at mixed levels in terms of intensity of the aerobic exercise from very low to quite rigorous, whilst one study used anaerobic exercise. Control groups consisted of passive control (eight studies; e.g. treatment as usual, relaxation, flexibility) or CBT (two studies), cognitive therapy (one study), supportive listening (one study), pacing (one study), pharmacological treatment (one study) and combination treatment (one study). Risk of bias varied across studies, but within each study, little variation was found in the risk of bias across our primary and secondary outcome measures.Investigators compared exercise therapy with ‘passive’ control in eight trials, which enrolled 971 participants. Seven studies consistently showed a reduction in fatigue following exercise therapy at end of treatment, even though the fatigue scales used different scoring systems: an 11-item scale with a scoring system of 0 to 11 points (MD -6.06, 95% CI -6.95 to -5.17; one study, 148 participants; low-quality evidence); the same 11-item scale with a scoring system of 0 to 33 points (MD -2.82, 95% CI -4.07 to -1.57; three studies, 540 participants; moderate-quality evidence); and a 14-item scale with a scoring system of 0 to 42 points (MD -6.80, 95% CI -10.31 to -3.28; three studies, 152 participants; moderate-quality evidence). Serious adverse reactions were rare in both groups (RR 0.99, 95% CI 0.14 to 6.97; one study, 319 participants; moderate-quality evidence), but sparse data made it impossible for review authors to draw conclusions. Study authors reported a positive effect of exercise therapy at end of treatment with respect to sleep (MD -1.49, 95% CI -2.95 to -0.02; two studies, 323 participants), physical functioning (MD 13.10, 95% CI 1.98 to 24.22; five studies, 725 participants) and self-perceived changes in overall health (RR 1.83, 95% CI 1.39 to 2.40; four studies, 489 participants). It was not possible for review authors to draw conclusions regarding the remaining outcomes.Investigators compared exercise therapy with CBT in two trials (351 participants). One trial (298 participants) reported little or no difference in fatigue at end of treatment between the two groups using an 11-item scale with a scoring system of 0 to 33 points (MD 0.20, 95% CI -1.49 to 1.89). Both studies measured differences in fatigue at follow-up, but neither found differences between the two groups using an 11-item fatigue scale with a scoring system of 0 to 33 points (MD 0.30, 95% CI -1.45 to 2.05) and a nine-item Fatigue Severity Scale with a scoring system of 1 to 7 points (MD 0.40, 95% CI -0.34 to 1.14). Serious adverse reactions were rare in both groups (RR 0.67, 95% CI 0.11 to 3.96). We observed little or no difference in physical functioning, depression, anxiety and sleep, and we were not able to draw any conclusions with regard to pain, self-perceived changes in overall health, use of health service resources and drop-out rate. With regard to other comparisons, one study (320 participants) suggested a general benefit of exercise over adaptive pacing, and another study (183 participants) a benefit of exercise over supportive listening. The available evidence was too sparse to draw conclusions about the effect of pharmaceutical interventions.

AUTHORS’ CONCLUSIONS: Patients with CFS may generally benefit and feel less fatigued following exercise therapy, and no evidence suggests that exercise therapy may worsen outcomes. A positive effect with respect to sleep, physical function and self-perceived general health has been observed, but no conclusions for the outcomes of pain, quality of life, anxiety, depression, drop-out rate and health service resources were possible. The effectiveness of exercise therapy seems greater than that of pacing but similar to that of CBT. Randomised trials with low risk of bias are needed to investigate the type, duration and intensity of the most beneficial exercise intervention.

Update of

 

Source: Larun L, Brurberg KG, Odgaard-Jensen J, Price JR. Exercise therapy for chronic fatigue syndrome. Cochrane Database Syst Rev. 2015 Feb 10;(2):CD003200. doi: 10.1002/14651858.CD003200.pub3. https://www.ncbi.nlm.nih.gov/pubmed/25674924

Comments

    • Tom Kindlon 2016 Apr 18 11:38 a.m.

      James C Coyne PhD has blogged here https://jcoynester.wordpress.com/2016/03/20/why-the-cochrane-collaboration-needs-to-clean-up-conflicts-of-interest/ about my comment:

      “Selective reporting (outcome bias)” and White et al. (2011) I don’t believe that White et al. (2011) (the PACE Trial) (3) should be classed as having a low risk of bias under “Selective reporting (outcome bias)” (Figure 2, page 15). According to the Cochrane Collaboration’s tool for assessing risk of bias (21), the category of low risk of bias is for: “The study protocol is available and all of the study’s pre-specified (primary and secondary) outcomes that are of interest in the review have been reported in the pre-specified way”. This is not the case in the PACE Trial. The three primary efficacy outcomes can be seen in the published protocol (22). None have been reported in the pre-specified way. The Cochrane Collaboration’s tool for assessing risk of bias states that a “high risk” of bias applies if any one of several criteria are met, including that “not all of the study’s pre-specified primary outcomes have been reported” or “one or more primary outcomes is reported using measurements, analysis methods or subsets of the data (e.g. subscales) that were not pre-specified”. In the PACE Trial, the third primary outcome measure (the number of “overall improvers”) was never published. Also, the other two primary outcome measures were reported using analysis methods that were not pre-specified (including switching from the bimodal to the Likert scoring method for The Chalder Fatigue Scale, one of the primary outcomes in your review). These facts mean that the “high risk of bias” category should apply.

      and the response I received from one of the authors .

More from Tom Kindlon

      • Tom Kindlon 2015 Sep 14 4:57 p.m.

        (contd.)

        Compliance

        The review doesn’t include any information on compliance. I’m not sure that there is much published information on this but I know there was a measure based on attendance at therapy sessions (which could be conducted over the phone) given for the PACE Trial (3). Ideally, it would be interesting if you could obtain some unpublished data from activity logs, records from heart-rate monitors, and other records to help build up a picture of what exercise was actually performed and the level of compliance. Information on adherence and what exercise was actually done is important in terms of helping clinicians, and indeed patients, to interpret and use the data. I mention patients because patients’ own decisions about their behaviour is likely to be affected by the medical information available to them, both within and outside of a supervised programme of graded exercise; unlike with an intervention like a drug, patients can undertake exercise without professional supervision.

        “Selective reporting (outcome bias)” and White et al. (2011)

        I don’t believe that White et al. (2011) (the PACE Trial) (3) should be classed as having a low risk of bias under “Selective reporting (outcome bias)” (Figure 2, page 15). According to the Cochrane Collaboration’s tool for assessing risk of bias (21), the category of low risk of bias is for: “The study protocol is available and all of the study’s pre-specified (primary and secondary) outcomes that are of interest in the review have been reported in the pre-specified way”. This is not the case in the PACE Trial. The three primary efficacy outcomes can be seen in the published protocol (22). None have been reported in the pre-specified way. The Cochrane Collaboration’s tool for assessing risk of bias states that a “high risk” of bias applies if any one of several criteria are met, including that “not all of the study’s pre-specified primary outcomes have been reported” or “one or more primary outcomes is reported using measurements, analysis methods or subsets of the data (e.g. subscales) that were not pre-specified”. In the PACE Trial, the third primary outcome measure (the number of “overall improvers”) was never published. Also, the other two primary outcome measures were reported using analysis methods that were not pre-specified (including switching from the bimodal to the Likert scoring method for The Chalder Fatigue Scale, one of the primary outcomes in your review). These facts mean that the “high risk of bias” category should apply.

        Thank you for taking the time to read my comments.

        Tom Kindlon

        Conflict of Interest statement:

        I am a committee member of the Irish ME/CFS Association and do a variety of unpaid work for the Association.

        (continues)

    More from Tom Kindlon

  • Laurie Thomas 2015 Feb 24 11:58 a.m.

    Clinical studies of chronic fatigue syndrome are plagued by serious problems in the inclusion/exclusion criteria. These problems stem from the fact that the syndrome consists of nonspecific symptoms that are “medically unexplained.” However, there is a major difference between medically unexplained and medically inexplicable. The symptoms of chronic fatigue syndrome can result from a serious circulatory problem that is easily overlooked. In 2003, Peckerman and coworkers showed that low cardiac output, as measured by impedance cardiography, predicts the severity of symptoms in CFS patients.[1] Miwa and Fujita found a small left ventricular size leading to low cardiac output in CFS patients with orthostatic intolerance.[2] Porter and coworkers reported that a case of femoral arteriovenous fistula causing high-output cardiac failure was originally misdiagnosed as chronic fatigue syndrome.[3]

    The studies of graded exercise for management of CFS are based on the presumption that CFS is the result of laziness and deconditioning and that the solution to the problem is to persuade the patient to exercise. Yet in many reported cases, the real problem was unrecognized cardiac decompensation. This state of cardiac decompensation could account for the push-crash phenomenon (serious, prolonged adverse events from overexertion) among people with CFS. Thus, a graded exercise program that might be beneficial for the large number of people who are tired and achy because of major depressive disorder could be catastrophic for the relatively small number of people whose problem is due to cardiac decompensation. Unfortunately, the existing studies of exercise for management of CFS do not shed light on this problem. The patients whose exercise intolerance is too severe to allow them to participate in the exercise program might refuse to enroll or might be dismissed as noncompliant if they try but fail to exercise. Yet as a result of the positive results of graded exercise for subjects whose real problem is major depressive disorder, patients with unrecognized cardiac decompensation are being scolded for failing to exercise.

    For ethical and scientific reasons, the protocol for a clinical study of subjects with CFS should be based on the best possible model for clinical management of CFS patients. It would begin with a careful assessment of the subject’s circulatory status. This assessment should include a tilt-table test, or at least a measurement of supine, sitting, and standing pulse and blood pressure. Any circulatory problem should be addressed appropriately. (Note that once the patient’s condition is found to be due to a circulatory problem, the patient no longer fits the inclusion criteria of “medically unexplained” symptoms.)

    As improper diet is the most prevalent cause of chronic ill-health, the cardiology assessment should be followed by a run-in period of at least a week of optimal dietary management. Subjects should be fed a low-fat (<10% of calories), purely plant-based diet that excludes the most common causes of food allergies or intolerance syndromes (i.e., wheat, rye, barley, corn, soy, strawberries, and citrus fruits). To ensure adherence, the diet should be administered in a residential setting. This kind of low-fat, plant-based diet can bring about a significant drop in blood pressure in hypertensive patients within 7 days, even if the patients stop taking blood pressure medication at baseline.[4] This correction of hypertension results from the decrease in systemic resistance. Thus, this diet could lead to a significant improvement in circulation, which would be beneficial to patients whose symptoms are due to poor circulation, even if they are not hypertensive. Note also that the elimination of poorly tolerated foods is the only reliable way to establish that the patient’s problem is due to a food intolerance. Of course, once the subject’s problem has been shown to be dietary in origin, the subject no longer has “medically unexplained” symptoms and thus no longer fits the inclusion criteria for a study of CFS.

    Many patients with a diagnosis of CFS are inactive, but they may be inactive because they are sick, rather than being sick because they are inactive. Thus, any study of exercise and CFS should be structured to establish the direction of causality. If a study of subjects with a diagnosis of CFS involves exercise, the outcome variables must involve some measurement of the subjects’ overall activity levels, not just to assess compliance with the exercise program but to assess whether the subjects are merely wasting their energy on the exercises and thus become less able to perform activities of daily living. In that situation, the exercise program could actually decrease the subject’s quality of life.

    [1] Peckerman A, LaManca JJ, Dahl KA, Chemitiganti R, Qureishi B, Natelson BH. Abnormal impedance cardiography predicts symptom severity in chronic fatigue syndrome. Am J Med Sci. 2003 Aug;326(2):55-60.

    [2] Miwa K1, Fujita M. Small heart with low cardiac output for orthostatic intolerance in patients with chronic fatigue syndrome.Clin Cardiol. 2011 Dec;34(12):782-6. doi: 10.1002/clc.20962. Epub 2011 Nov 28.

    [3] Porter J1, Al-Jarrah Q1, Richardson S. A case of femoral arteriovenous fistula causing high-output cardiac failure, originally misdiagnosed as chronic fatigue syndrome. Case Rep Vasc Med. 2014;2014:510429. doi: 10.1155/2014/510429. Epub 2014 May 20.

    [4] McDougall J1, Thomas LE, McDougall C, Moloney G, Saul B, Finnell JS, Richardson K, Petersen KM.Effects of 7 days on an ad libitum low-fat vegan diet: the McDougall Program cohort. Nutr J. 2014 Oct 14;13:99. doi: 10.1186/1475-2891-13-99.

  • Joan Crawford 2015 Feb 19 07:58 a.m.

    This review states: “Chronic fatigue syndrome (CFS) is characterised by persistent, medically unexplained fatigue, as well as symptoms such as musculoskeletal pain, sleep disturbance, headaches and impaired concentration and short-term memory.”

    This is important because the above description of CFS and the addition of trials in the review only requiring chronic fatigue as an inclusionary requirement (Sharpe et al, 1991) makes generalisation of the findings problematic as many patients with major depressive disorder (MDD) would also meet the above description of CFS and Sharpe et al.’s (1991) criteria if their condition was fatiguing – a common feature – along with muscular aches and pains, sleep disturbance, cognitive difficulties and so on. The high percentage of patients included in these trials suffering from depression (Table 1. Study demographics) indicates this may be their primary condition – confounding the results. Exercise, through behavioural activation programs, has a moderately positive impact on patients with depression (Cooney et al., 2013). It is unclear whether the modest improvement seen in some of these trials can be accounted for by an improvement in low mood caused by depression. Moreover, where there is data there is a high usage of antidepressants in patients included in the reviewed trials (Table 1. Study demographics).

    Of the eight exercise trials included in this review, five used broad inclusion criteria (Sharpe et al, 1991) (N=1287) – 85% of all participants. Two of these studies also used a version of the London criteria, which did not exclude patients with depression and other psychiatric conditions as originally specified by the authors making it hard to assess how these criteria were operationalised. Three further trials used the CDC Fukuda (1994) CFS criteria (N=231). While these purport to be more selective, they do not necessary include patients whose primary difficulties include post exertional weakness and debility and flu-like symptoms and so on beyond broadly defined fatigue and other general symptoms which could be attributed to CFS or MDD.

    There is also an issue with lack of evidence of patients’ fidelity to exercise programs using objective measures. We do not know if patients increased their activity as suggested to them by their clinicians. Without using devises such as actimeters or pedometers to track daily activity levels we have no accurate way of assessing whether an increase in activity occurred and whether this helps. Black & McCully’s (2005) study demonstrates objectively the difficulties patients face when trying to increase activity and concluded that they were exercise intolerant, unable to sustain activity targets.

    The report is bold in stating “no evidence suggests that exercise therapy may worsen outcomes“. Many patient surveys from across the world report numerous instances of harm and worsening of symptoms from taking part in exercise programs. For a summary of the difficulties and limitations of the reporting of harms, in and outside of clinical trials, and why these might be underestimated please see Kindlon (2011).

    References

    Cooney GM, Dwan K, Greig CA, Lawlor DA, Rimer J, Waugh FR, McMurdo M, Mead GE (2013). Exercise for depression. The Cochrane Library. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD004366.pub6/abstract

    Fukuda, K., Straus, S.E., Hickie, I., Sharpe, M.C., Dobbins, J.G., & Komaroff, A. (1994). The chronic fatigue syndrome: A comprehensive approach to its definition and study. International chronic fatigue syndrome study group. Annals of Internal Medicine, 121(12), 953-959.

    Kindlon T. (2011). Reporting of harms associated with graded exercise therapy and cognitive behavioural therapy in Myalgic Encephalomyelitis/chronic fatigue syndrome. Bulletin of the IACFS/ME. 19(2): 59-111.

    M, Archard L, Banatvala J, Borysiewicz LK, Clare AW, David A, et al. (1991). Chronic fatigue syndrome: guidelines for research. Journal of the Royal Society of Medicine, 84(2):118–21.

  • Ellen M Goudsmit 2015 Feb 14 4:49 p.m.

    I had contact with the main author to alert her to certain misconceptions published earlier. Sadly, I found I had wasted my time.

    For example, we can not tell how many, if any, patients in the PACE trial met the London criteria. Having read that the researchers planned to select individuals with ME and had listed the criteria in the protocol, I checked that Prof. White would use the original version which had not been published. I had been the Chair of the Research Working Group at AFME when they were being tested and still had a copy. They came with a questionnaire as well as a physician to establish their reliability. Prof. White was unwilling to confirm that he would use the original so in light of the uncertainty, I requested that he did not cite me as a co-author. I did not work on the lay version published in the Westcare report which I felt was deeply flawed. I was right to be cautious. The trial manual indicates that the researchers adapted the lay version and I could tell from the results that the London criteria were not used as they exclude individuals with psychological disorders so the percentage for that variable should have been nil. It wasn’t.

    A second point. The review does not pay the required attention to the lack of actigraphy, an objective measure to confirm fidelity to the protocol. This has been included in most studies conducted in the USA and the Netherlands. The results from actigraphy indicate that, except for 7 individuals, there were no significant increases in activity after GET and similar therapies. According to Friedberg who assessed the phenomenon, patients on exercise trials tend to reprioritise their activities, choosing those that result in less stress etc. In short, they learn to pace themselves (Goudsmit et al 2012). That is why they feel better and less fatigued, but it’s not possible to attribute improvement to an increase in activity (or fitness).

    Pacing was not defined and adaptive pacing therapy (APT) refers to a programme consisting of several components including stress management, advice on sleeping etc. There are no data for pacing alone in the PACE trial, so to conclude that GET is superior to pacing therapies is premature. There is only one pacing therapy. Pacing is not a therapy. It’s a simple strategy. Research by Jason suggests that people who pace themselves feel better, irrespective of the protocol they are on.

    Finally, we know that many patients have adverse reactions to activity. It’s a criterion for diagnosis. To dismiss them (“no evidence that exercise therapy worsens outcomes”) is hard to comprehend. Every survey in every country to date has revealed that GET does have marked adverse reactions and can result in relapse. See also Sisto et al and Black and McCully, cited in Goudsmit et al 2012.

    To summarise: lack of a definition of pacing resulting in confusion, repetition of incorrect information, failure to consider the findings from objective measures suggesting patients did not adhere to the protocol and ignoring consistent reports from surveys that undermine one’s conclusions. I expect more objectivity and attention to detail from the Cochrane Library.

    Goudsmit, EM., Jason, LA, Nijs, J and Wallman, KE. Pacing as a strategy to improve energy management in myalgic encephalomyelitis/chronic fatigue syndrome: A consensus document. Disability and Rehabilitation, 2012, 34, 13, 1140-1147. Online 19th December. doi: 10.3109/09638288.2011.635746.

  • This article was mentioned in a comment by Tom Kindlon 2015 Oct 06 4:36 p.m.

    See: Randomised controlled trial of cognitive behaviour therapy delivered in groups of patients with chronic fatigue syndrome. [Psychother Psychosom. 2015.]

 

Graded exercise for chronic fatigue syndrome: too soon to dismiss reports of adverse reactions

Sir,

Given there is no formal system to report adverse reactions to non-pharmacological interventions such as graded exercise therapy (GET) for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME), other sources of data need to be considered when evaluating safety. As noted by Clark & White, a large survey conducted in 2001 by the charity Action for ME found that 50% of patients who received graded exercise felt worse (1, 2). They also referred to a subsequent study by the same group suggesting that many patients might not have been treated by experienced therapists (3). However, the sample was small and, as in all surveys, therapist competence was not assessed.

A review of all the surveys conducted to date not only supports the view that a significant proportion of patients experience adverse reactions following GET, but also that it is premature to attribute those reactions to practitioner inexperience or inadequate training (1, 4). For example, the results of a recent survey conducted by the ME Association showed that of the 906 individuals who had received GET, 33.1% felt “much worse” and 23.4% judged themselves to be “slightly worse” (4). Similarly, a survey of patients who had been treated in the previous 3 years, i.e. following the refinement of the protocol as discussed by Clark & White, revealed that 34% of the 722 who had tried GET perceived themselves to be worse (5).

Without details of the training of the therapist and their fidelity to the treatment manual, one can only speculate about the factors associated with poor outcome. Nijs et al. (6) discussed some of the possible reasons. However, there are additional factors that deserve consideration when evaluating the efficacy and safety of GET. Firstly, the survey results may reflect, at least in part, the experiences of patients receiving treatment in a clinical setting. As has been shown in studies on other interventions, the outcomes documented in routine practice may be more realistic than those obtained in randomized controlled trials (7). Secondly, many patients may not be able to complete graded activity schedules for various reasons, including ongoing pathology. For instance, Black & McCully (8) used an accelerometer to measure activity levels before, during and after a 4-week “training period” consistent with GET. They documented an increase in activity counts lasting between 4 and 10 days, and this was associated with higher scores for pain and fatigue. The inability to sustain target activity levels was also noted by Friedberg (9), who followed the progress of one patient during 26 sessions of GET. He recorded a 10.6% decrease in mean weekly step counts, leading Friedberg to speculate that the subjective measures of improvement might have been the result of activity substitution and a corresponding reduction in perceived stress.

Finally, we were surprised that neither of the letters cited the research by White et al. (10). This elegant study supports the growing evidence of abnormal metabolic and immunological reactions to exercise in subsets with CFS. Although their sample was small, White et al. found elevated concentrations of the pro-inflammatory cytokine tumour necrosis factor-alpha at time-points of 3 h and 3 days after exercise. In addition, they documented increased levels of the anti-inflammatory cytokine transforming growth factor-beta after normal exertion. We therefore concur with Nijs et al. (6) as well as other researchers, that GET may not be appropriate for all patients with CFS and that pacing may provide a useful, acceptable and safe alternative (6, 11, 12).

You can read the rest of this letter here: https://www.medicaljournals.se/jrm/content/abstract/10.2340/16501977-0493

Comment on: Chronic fatigue syndrome. [J Rehabil Med. 2008]

 

Source: Kindlon T, Goudsmit EM. Graded exercise for chronic fatigue syndrome: too soon to dismiss reports of adverse reactions. J Rehabil Med. 2010 Feb;42(2):184; author reply 184-6. doi: 10.2340/16501977-0493. https://www.medicaljournals.se/jrm/content/abstract/10.2340/16501977-0493 (Full article)