A review of intravenous immunoglobulin in the treatment of neuroimmune conditions, acute COVID-19 infection, and post-acute sequelae of COVID-19 Syndrome

Abstract:

Intravenous immunoglobulin (IVIG) is an immunomodulatory therapy that has been studied in several neuroimmune conditions, such as Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, and multiple sclerosis. It has also been proposed as a potential treatment option for acute COVID-19 infection and post-acute sequelae of SARS-CoV-2 infection (PASC). IVIG is thought to function by providing the recipient with a pool of antibodies, which can, in turn, modulate immune responses through multiple mechanisms including neutralization of cytokines and autoantibodies, saturation of neonatal fragment crystallizable receptors, inhibition of complement activation, and regulation of T and B cell mediated inflammation.

In acute COVID-19, studies have shown that early administration of IVIG and plasmapheresis in severe cases can reduce the need for mechanical ventilation, shorten ICU and hospital stays, and lower mortality. Similarly, in PASC, while research is still in early stages, IVIG has been shown to alleviate persistent symptoms in small patient cohorts.

Furthermore, IVIG has shown benefits in another condition which has symptomatic overlap with PASC, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), though studies have yielded mixed results. It is important to note that IVIG can be associated with several potential adverse effects, such as anaphylaxis, headaches, thrombosis, liver enzyme elevations and renal complications. In addition, the high cost of IVIG can be a deterrent for payers and patients.

This review provides a comprehensive update on the use of IVIG in multiple neuroimmune conditions, ME/CFS, acute COVID-19, and PASC, as well as covers its history, production, pricing, and mechanisms of action. We also identify key areas of future research, including the need to optimize the use of Ig product dosing, timing, and patient selection across conditions, particularly in the context of COVID-19 and PASC.

Source: Morse BA, Motovilov K, Michael Brode W, Michael Tee F, Melamed E. A review of intravenous immunoglobulin in the treatment of neuroimmune conditions, acute COVID-19 infection, and post-acute sequelae of COVID-19 Syndrome. Brain Behav Immun. 2024 Oct 8:S0889-1591(24)00648-2. doi: 10.1016/j.bbi.2024.10.006. Epub ahead of print. PMID: 39389388. https://www.sciencedirect.com/science/article/abs/pii/S0889159124006482

Case-Control Study of Individuals With Small Fiber Neuropathy After COVID-19

Abstract:

Objectives: To report a case-control study of new-onset small fiber neuropathy (SFN) after COVID-19 with invasive cardiopulmonary exercise testing (iCPET). SFN is a critical objective finding in long COVID and amenable to treatment.

Methods: A retrospective chart review was conducted on patients seen in the NeuroCOVID Clinic at Yale who developed new-onset SFN after a documented COVID-19 illness. We collected demographics, symptoms, skin biopsy, iCPET testing, treatments, and clinical response to treatment or no intervention.

Results: Sixteen patients were diagnosed with SFN on skin biopsy (median age 47, 75% female, 75% White). 92% of patients reported postexertional malaise characteristic of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and 7 patients underwent iCPET, which demonstrated neurovascular dysregulation and dysautonomia consistent with ME/CFS. Nine patients underwent treatment with IVIG, and 7 were not treated with IVIG. The IVIG group experienced significant clinical response in their neuropathic symptoms (9/9) compared with those who did not receive IVIG (3/7; p = 0.02).

Discussion: Here, we present preliminary evidence that after COVID-19, SFN is responsive to treatment with IVIG and linked with neurovascular dysregulation and dysautonomia on iCPET. A larger clinical trial is indicated to further demonstrate the clinical utility of IVIG in treating postinfectious SFN.

Classification of evidence: This study provides Class III evidence. It is a retrospective cohort study.

Source: McAlpine L, Zubair AS, Joseph P, Spudich S. Case-Control Study of Individuals With Small Fiber Neuropathy After COVID-19. Neurol Neuroimmunol Neuroinflamm. 2024 May;11(3):e200244. doi: 10.1212/NXI.0000000000200244. Epub 2024 Apr 17. PMID: 38630952. https://www.neurology.org/doi/10.1212/NXI.0000000000200244 (Full text)

Intravenous immunoglobulin as a potential treatment for long COVID

Abstract:

Introduction: On 31 July 2023, the United States Department of Health and Human Services announced the formation of the Office of Long COVID Research and Practice and the United States National Institutes of Health (NIH) opened enrollment for the therapeutic arm of the RECOVER initiative, a prospective, randomized study to evaluate new treatment options for long coronavirus disease 2019 (long COVID).

Areas covered: One of the first drugs to be studied in this nationwide initiative is intravenous immunoglobulin (IVIG), which will be a treatment option for subjects enrolled in RECOVER-AUTO, a randomized trial to investigate therapeutic strategies for autonomic dysfunction related to long COVID.

Expert opinion: IVIG is a mixture of human antibodies (human immunoglobulin) that has been widely used to treat a variety of diseases, including immune thrombocytopenia purpura, Kawasaki disease, chronic inflammatory demyelinating polyneuropathy, and certain infections such as influenza, human immunodeficiency virus, and measles. However, the role of IVIG in the treatment of post-COVID-19 conditions is uncertain. This manuscript examines what is known about IVIG in the treatment of long COVID and explores how this therapeutic agent may be used in the future to address this condition.

Source: McCarthy MW. Intravenous immunoglobulin as a potential treatment for long COVID. Expert Opin Biol Ther. 2023 Jul-Dec;23(12):1211-1217. doi: 10.1080/14712598.2023.2296569. Epub 2023 Dec 28. PMID: 38100573. https://www.tandfonline.com/doi/full/10.1080/14712598.2023.2296569

Long-term high-dose immunoglobulin successfully treats Long COVID patients with pulmonary, neurologic, and cardiologic symptoms

Abstract:

Introduction: Long COVID is the overarching name for a wide variety of disorders that may follow the diagnosis of acute SARS-COVID-19 infection and persist for weeks to many months. Nearly every organ system may be affected.

Methods: We report nine patients suffering with Long COVID for 101 to 547 days. All exhibited significant perturbations of their immune systems, but only one was known to be immunodeficient prior to the studies directed at evaluating them for possible treatment. Neurological and cardiac symptoms were most common. Based on this data and other evidence suggesting autoimmune reactivity, we planned to treat them for 3 months with long-term high-dose immunoglobulin therapy. If there was evidence of benefit at 3 months, the regimen was continued.

Results: The patients’ ages ranged from 34 to 79 years—with five male and four female patients, respectively. All nine patients exhibited significant immune perturbations prior to treatment. One patient declined this treatment, and insurance support was not approved for two others. The other six have been treated, and all have had a significant to remarkable clinical benefit.

Conclusion: Long-term high-dose immunoglobulin therapy is an effective therapeutic option for treating patients with Long COVID.

Source: Thompson JS, Thornton AC, Ainger T and Garvy BA (2023) Long-term high-dose immunoglobulin successfully treats Long COVID patients with pulmonary, neurologic, and cardiologic symptoms. Front. Immunol. 13:1033651. doi: 10.3389/fimmu.2022.1033651 https://www.frontiersin.org/articles/10.3389/fimmu.2022.1033651/full (Full text)

Intravenous immunoglobulin as an important adjunct in the prevention and therapy of coronavirus 2019 disease

Abstract:

The coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenged globally with its morbidity and mortality. A small percentage of affected patients (20%) progress into the second stage of the disease clinically presenting with severe or fatal involvement of lung, heart and vascular system, all contributing to multiple-organ failure. The so-called ‘cytokines storm’ is considered the pathogenic basis of severe disease and it is a target for treatment with corticosteroids, immunotherapies and intravenous immunoglobulin (IVIg).

We provide an overview of the role of IVIg in the therapy of adult patients with COVID-19 disease. After discussing the possible underlying mechanisms of IVIg immunomodulation in COVID-19 disease, we review the studies in which IVIg was employed. Considering the latest evidence that show a link between new coronavirus and autoimmunity, we also discuss the use of IVIg in COVID-19 and anti-SARS-CoV-2 vaccination related autoimmune diseases and the post-COVID-19 syndrome.

The benefit of high-dose IVIg is evident in almost all studies with a rapid response, a reduction in mortality and improved pulmonary function in critically ill COVID-19 patients. It seems that an early administration of IVIg is crucial for a successful outcome. Studies’ limitations are represented by the small number of patients, the lack of control groups in some and the heterogeneity of included patients. IVIg treatment can reduce the stay in ICU and the demand for mechanical ventilation, thus contributing to attenuate the burden of the disease.

Source: Danieli MG, Piga MA, Paladini A, Longhi E, Mezzanotte C, Moroncini G, Shoenfeld Y. Intravenous immunoglobulin as an important adjunct in the prevention and therapy of coronavirus 2019 disease. Scand J Immunol. 2021 Nov;94(5):e13101. doi: 10.1111/sji.13101. Epub 2021 Sep 16. PMID: 34940980; PMCID: PMC8646640. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8646640/ (Full text)

Successful treatment of postural orthostatic tachycardia and mast cell activation syndromes using naltrexone, immunoglobulin and antibiotic treatment

Abstract:

A patient with severe postural orthostatic tachycardia syndrome (POTS) and mast cell activation syndrome (MCAS) received immunotherapy with low-dose naltrexone (LDN) and intravenous immunoglobulin (IVIg) and antibiotic therapy for small intestinal bacterial overgrowth (SIBO). A dramatic and sustained response was documented. The utility of IVIg in autoimmune neuromuscular diseases has been published, but clinical experience with POTS is relatively unknown and has not been reported in MCAS. As a short-acting mu-opioid antagonist, LDN paradoxically increases endorphins which then bind to regulatory T cells which regulate T-lymphocyte and B-lymphocyte production and this reduces cytokine and antibody production. IVIg is emerging as a promising therapy for POTS. Diagnosis and treatment of SIBO in POTS is a new concept and appears to play an important role.

Source: Leonard B Weinstock, Jill B Brook, Trisha L Myers, Brent Goodman. Successful treatment of postural orthostatic tachycardia and mast cell activation syndromes using naltrexone, immunoglobulin and antibiotic treatment. Case Report. BMJ Case Rep. 2018; 2018: bcr2017221405. Published online 2018 Jan 11. doi: 10.1136/bcr-2017-221405 PMCID: PMC5778345 PMID: 29326369. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778345/ (Full article)

Paradoxical response to intravenous immunoglobulin in a case of Parvovirus B19-associated chronic fatigue syndrome

Abstract:

We describe a case of chronic fatigue syndrome (CFS) associated to Parvovirus B19 infection where administration of intravenous immunoglobulins (IVIG), previously reported as effective, induced a paradoxical clinical response and increased viral replication. The indication of IVIG administration in the treatment of Parvovirus B19-associated CFS should be carefully reconsidered.

Copyright © 2014 Elsevier B.V. All rights reserved.

 

Source: Attard L, Bonvicini F, Gelsomino F, Manfredi R, Cascavilla A, Viale P, Varani S, Gallinella G. Paradoxical response to intravenous immunoglobulin in a case of Parvovirus B19-associated chronic fatigue syndrome. J Clin Virol. 2015 Jan;62:54-7. doi: 10.1016/j.jcv.2014.11.021. Epub 2014 Nov 22. https://www.ncbi.nlm.nih.gov/pubmed/25542471

 

Drug targets in stress-related disorders

Abstract:

Nervous and immune systems mutually cooperate via release of mediators of both neurological and immunological derivation. Adrenocorticotropin hormone (ACTH) is a product of the hypothalamus-pituitary adrenal axis (HPAA) which stimulates secretion of corticosteroids from adrenals. In turn, corticosteroids modulate the immune response in virtue of their anti-inflammatory activity.

On the other hand, catecholamines, products of the sympathetic nervous system (SNS), regulate immune function by acting on specific beta-adrenergic receptors. Conversely, cytokines released by monocytes/macrophages and lymphocytes, upon antigenic stimulation, are able to cross the blood-brain-barrier, thus modulating nervous functions (e.g., thermoregulation, sleep, and appetite). However, cytokines are locally produced in the brain, especially in the hypothalamus, thus contributing to the development of anorexic, pyrogenic, somnogenic and behavioural effects.

Besides pathogens and/or their products, the so-called stressors are able to activate both HPAA and SNS, thus influencing immune responses. In this respect, many studies conducted in medical students taking exams have evidenced an array of stress-induced immune alterations. Phobic disorders and migraine without aura (MWA) represent examples of stress-related disorders in which phagocytic immune deficits, endotoxemia and exaggerated levels of proinflammatory cytokines [Tumor Necrosis Factor-alpha (TNF- alpha), and interleukin- 1 beta] have been detected. Quite interestingly, administration of a thymic hormone could ameliorate clinical symptoms in phobic patients.

In MWA patients, a beta-blocker, propranolol, could mitigate migraine, whose cessation coincided with a drop of TNF-alpha serum concentration. In phobic disorders and in MWA, benzodiazepines are very often administered and, in this respect, some of them, such as diazepam, inhibit immune functions, while others, e.g., alprazolam, enhance immune responses. Alprazolam could improve clinical symptoms in MWA patients.

Chronic Fatigue Syndrome (CFS) is a disorder whose etiology and pathogenesis are still unknown. In this syndrome both abnormalities of nervous and immune systems have been reported. Despite many immune parameters evaluated in CFS no specific biomarkers of disease have been found. Our own data are in agreement with current literature in that we found decreased levels of serum (IFN)-gamma in these patients, thus indicating a predominance of T helper (h)1 response in CFS. Also leptin, a hormone which regulates food intake, fluctuates within normal ranges in CFS individuals. Quite interestingly, in depressed patients, used as controls, leptinaemia was more elevated than in CFS. Finally, in a series of recent therapeutic trials several immunomodulating agents have been used, such as staphypan Berna, lactic acid bacteria, kuibitang and intravenous immunoglobulin.

In conclusion, it seems that major drug targets in stress-related disorders are immune cells in terms of inhibition of proinflammatory cytokines and modulation of Th responses. In particular, according to recent evidences, antidepressants seem to exert beneficial effects in experimental autoimmune neuritis in rats by decreasing IFN- beta release or augmenting NK activity in depressed patients.

 

Source: Covelli V, Passeri ME, Leogrande D, Jirillo E, Amati L. Drug targets in stress-related disorders. Curr Med Chem. 2005;12(15):1801-9. http://www.ncbi.nlm.nih.gov/pubmed/16029148

 

Cytokines in parvovirus B19 infection as an aid to understanding chronic fatigue syndrome

Abstract:

Human parvovirus B19 infection has been associated with various clinical manifestations of a rheumatic nature such as arthritis, fatigue, and chronic fatigue syndrome (CFS), which can persist for years after the acute phase.

The authors have demonstrated recently that acute B19 infection is accompanied by raised circulating levels of IL-1b, IL-6, TNF-a, and IFN-g and that raised circulating levels of TNF-a and IFN-g persist and are accompanied by MCP-1 in those patients who develop CFS.

A resolution of clinical symptoms and cytokine dysregulation after intravenous immunoglobulin (IVIG) therapy, which is the only specific treatment for parvovirus B19 infection, also has been reported. Although CFS may be caused by various microbial and other triggers, that triggered by B19 virus is clinically indistinguishable from idiopathic CFS and exhibits similar cytokine abnormalities and may represent an accessible model for the study of CFS.

 

Source: Kerr JR, Tyrrell DA. Cytokines in parvovirus B19 infection as an aid to understanding chronic fatigue syndrome. Curr Pain Headache Rep. 2003 Oct;7(5):333-41. http://www.ncbi.nlm.nih.gov/pubmed/12946285

 

Successful intravenous immunoglobulin therapy in 3 cases of parvovirus B19-associated chronic fatigue syndrome

Abstract:

Three cases of chronic fatigue syndrome (CFS) that followed acute parvovirus B19 infection were treated with a 5-day course of intravenous immunoglobulin (IVIG; 400 mg/kg per day), the only specific treatment for parvovirus B19 infection. We examined the influence of IVIG treatment on the production of cytokines and chemokines in individuals with CFS due to parvovirus B19. IVIG therapy led to clearance of parvovirus B19 viremia, resolution of symptoms, and improvement in physical and functional ability in all patients, as well as resolution of cytokine dysregulation.

 

Source: Kerr JR, Cunniffe VS, Kelleher P, Bernstein RM, Bruce IN.  Successful intravenous immunoglobulin therapy in 3 cases of parvovirus B19-associated chronic fatigue syndrome. Clin Infect Dis. 2003 May 1;36(9):e100-6. Epub 2003 Apr 22. http://cid.oxfordjournals.org/content/36/9/e100.long (Full article)