Brain-regional characteristics and neuroinflammation in ME/CFS patients from neuroimaging: A systematic review and meta-analysis

Abstract:

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating condition characterized by an elusive etiology and pathophysiology. This study aims to evaluate the pathological role of neuroinflammation in ME/CFS by conducting an exhaustive analysis of 65 observational studies.

Four neuroimaging techniques, including magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), electroencephalography (EEG), and positron emission tomography (PET), were employed to comparatively assess brain regional structure, metabolite profiles, electrical activity, and glial activity in 1529 ME/CFS patients (277 males, 1252 females) and 1715 controls (469 males, 1246 females). Clinical characteristics, including sex, age, and fatigue severity, were consistent with established epidemiological patterns.

Regional alterations were most frequently identified in the cerebral cortex, with a notable focus on the frontal cortex. However, our meta-analysis data revealed a significant hypoactivity in the insular and thalamic regions, contrary to observed frequencies. These abnormalities, occurring in pivotal network hubs bridging reason and emotion, disrupt connections with the limbic system, contributing to the hallmark symptoms of ME/CFS.

Furthermore, we discuss the regions where neuroinflammatory features are frequently observed and address critical neuroimaging limitations, including issues related to inter-rater reliability. This systematic review serves as a valuable guide for defining regions of interest (ROI) in future neuroimaging investigations of ME/CFS

Source: Lee JS, Sato W, Son CG. Brain-regional characteristics and neuroinflammation in ME/CFS patients from neuroimaging: A systematic review and meta-analysis. Autoimmun Rev. 2023 Nov 26:103484. doi: 10.1016/j.autrev.2023.103484. Epub ahead of print. PMID: 38016575. https://www.sciencedirect.com/science/article/pii/S1568997223002185 (Full text)

Modulatory effects of cognitive exertion on regional functional connectivity of the salience network in women with ME/CFS: A pilot study

Abstract:

Background: A common symptom of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is post-exertional malaise (PEM). Various brain abnormalities have been observed in patients with ME/CFS, especially in insular and limbic areas, but their link with ME/CFS symptoms is still unclear. This pilot study aimed at investigating the association between PEM in ME/CFS and changes in functional connectivity (FC) of two main networks: the salience network (SN) and the default-mode network (DMN).

Methods: A total of 16 women, 6 with and 10 without ME/CFS, underwent clinical and MRI assessment before and after cognitive exertion. Resting-state FC maps of 7 seeds (3 for the SN and 4 for the DMN) and clinical measures of fatigue, pain and cognition were analysed with repeated-measure models. FC-symptom change associations were also investigated.

Results: Exertion induced increases in fatigue and pain in patients with ME/CFS, compared to the control group, while no changes were found in cognitive performance. At baseline, patients showed altered FC between some DMN seeds and frontal areas and stronger FC between all SN seeds and left temporal areas and the medulla. Significantly higher FC increases in patients than in controls were found only between the right insular seed and frontal and subcortical areas; these increases correlated with worsening of symptoms.

Conclusions: Cognitive exertion can induce worsening of ME/CFS-related symptoms. These changes were here associated with strengthening of FC of the right insula with areas involved in reward processing and cognitive control.

Source: Riccardo Manca, Katija Khan, Micaela Mitolo, Matteo DeMarco, Lynsey Grieveson, Rosemary Varley, Iain D. Wilkinson, Annalena Venneri. Journal of the Neurological Sciences Preprint. January 22, 2021. DOI:https://doi.org/10.1016/j.jns.2021.117326 https://www.jns-journal.com/article/S0022-510X(21)00019-8/fulltext#secst0005 

Brain studies show chronic fatigue syndrome and Gulf War illness are distinct conditions

CHICAGO (October 23, 2019) — Gulf War Illness (GWI) and chronic fatigue syndrome (CFS) share symptoms of disabling fatigue, pain, systemic hyperalgesia (tenderness), negative emotion, sleep and cognitive dysfunction that are made worse after mild exertion (postexertional malaise). Now, neuroscientists at Georgetown University Medical Center have evidence, derived from human brain studies, that GWI and CFS are two distinct disorders that affect the brain in opposing ways.

The findings, presented in two related studies at the annual meeting of the Society for Neuroscience (SFN) in Chicago, offer a new perspective on neurotoxicity and suggest that methods to effectively diagnose and treat these disorders could be developed, says the studies’ senior author, James Baraniuk, MD, a Georgetown professor of medicine.

GWI affects veterans of the 1990-1991 Persian Gulf War who were exposed to a toxic environment of nerve agents, pesticides and other neurotoxins, while the etiology of CFS is unknown. The overlapping symptoms suggest they may share some common mechanisms of disease.

Baraniuk was first to find unique physical changes in the brains of patients with GWI, and he and his colleagues have also found changes in brain chemistry between GWI and CFS. “This new work further emphasizes that chronic fatigue syndrome and Gulf War Illness are two very real, and very distinct, diseases of the brain,” he says.

The two SFN studies were led by investigators in Baraniuk’s lab. One, being presented by neuroscientist Stuart Washington, PhD, details how specific areas in the brain are affected by the disorders, and the second, led by student Haris Pepermintwala, MS, takes a deep dive into one of those areas, the brain stem, to illustrate the degree to which these conditions have differing effects.

Chronic fatigue syndrome/myalgic encephalomyelitis affects between 836,000 and 2.5 million Americans, according to a 2015 report by the National Academy of Medicine. Gulf War Illness developed in about one-third of the 697,000 veterans deployed to the 1990-1991 Persian Gulf War. Baraniuk says that during Operation Desert Storm, these veterans were exposed to combinations of nerve agents, pesticides and other toxic chemicals that may have triggered the chronic pain and cognitive and gastrointestinal problems.

Both GWI and CFS share common features: cognitive dysfunction, pain and fatigue primarily following physical exercise. To determine how these conditions affect brain function, investigators studied neuronal activation using functional MRI (fMRI) during a cognitive task a day before and a day after bicycle exercise stress tests in their different groups: 38 CFS patients, 80 GWI patients, and a control group of 23 healthy sedentary volunteers. Brain activation during a working memory task was compared between the pre- and post-exercise fMRI studies, and between CFS and GWI groups.

Before exercise, brain activation was similar between groups. However, after exercise the CFS group showed significantly increased activation of the midbrain, while GWI had the opposite effect, with decreased activation in this vital region of the arousal network. CFS also had increased activation in the insula. In contrast, GWI, but not CFS, had a decrease in activation of the cerebellum after exercise. The findings show that specific brain regions acted in opposing ways, representing a differentiation between GWI and CFS.

While these areas are involved in pain perception, among their many other tasks, “this doesn’t mean more or less activity is directly related to pain,” says Washington. “What it does show is that the two conditions are distinct from each other and involve different cellular/molecular mechanisms.”

The second study, led by Pepermintwala, looked more closely at specific regions within the brain stem and confirmed that CFS had significantly increased activation during the cognitive task after the exercise provocations, while GWI had significantly reduced activation.

These regions are involved in vital functions for instantaneous assessments of threats, predator-prey decisions, arousal, modulation of chronic pain, sleep and other neurobehavioral functions, Pepermintwala says. But after exercise, the CFS group had significantly increased activity in the majority of regions evaluated, while the GWI patients experienced significantly decreased activation.

The results support other research, conducted post-mortem in veterans with PTSD, suggesting that the brain stem in these veterans may have physical abnormalities, such as a loss of neurons, Pepermintwala says. “The midbrain is affected by the exercise and cognitive challenges, but CFS and GWI react in opposite ways, showing that they are related, but distinctly different disorders.”


For the study led by Washington, additional co-authors include Rakib Rahan, Richard Garner, Destie Provenzano, Kristina Zajur, Florencia Martinez Addiego, John VanMeter and Baraniuk.

For the study led by Pepermintwala, additional co-authors include Washington, Addiego, Rayhan and Baraniuk.

The authors report having no personal financial interests related to the studies.

These studies were supported by funding from The Sergeant Sullivan Circle, Barbara Cottone, Dean Clarke Bridge Prize, Department of Defense Congressionally Directed Medical Research Program (W81XWH-15-1-0679 and W81-XWH-09-1-0526), and the National Institute of Neurological Disorders and Stroke (R21NS088138 and RO1NS085131). The project has been funded in whole or in part with federal funds (UL1TR000101 previously UL1RR031975) from the National Center for Advancing Translational Sciences, National Institutes of Health, through the Clinical and Translational Science Awards Program.

Altered right anterior insular connectivity and loss of associated functions in adolescent chronic fatigue syndrome

Abstract:

Impairments in cognition, pain intolerance, and physical inactivity characterize adolescent chronic fatigue syndrome (CFS), yet little is known about its neurobiology. The right dorsal anterior insular (dAI) connectivity of the salience network provides a motivational context to stimuli. In this study, we examined regional functional connectivity (FC) patterns of the right dAI in adolescent CFS patients and healthy participants.

Eighteen adolescent patients with CFS and 18 aged-matched healthy adolescent control participants underwent resting-state functional magnetic resonance imaging. The right dAI region of interest was examined in a seed-to-voxel resting-state FC analysis using SPM and CONN toolbox. Relative to healthy adolescents, CFS patients demonstrated reduced FC of the right dAI to the right posterior parietal cortex (PPC) node of the central executive network. The decreased FC of the right dAI-PPC might indicate impaired cognitive control development in adolescent CFS. Immature FC of the right dAI-PPC in patients also lacked associations with three known functional domains: cognition, pain and physical activity, which were observed in the healthy group. These results suggest a distinct biological signature of adolescent CFS and might represent a fundamental role of the dAI in motivated behavior.

Source: Wortinger LA, Glenne Øie M, Endestad T, Bruun Wyller V. Altered right anterior insular connectivity and loss of associated functions in adolescent chronic fatigue syndrome. PLoS One. 2017 Sep 7;12(9):e0184325. doi: 10.1371/journal.pone.0184325. ECollection 2017. https://www.ncbi.nlm.nih.gov/pubmed/28880891

Aberrant Resting-State Functional Connectivity in the Salience Network of Adolescent Chronic Fatigue Syndrome

Abstract:

Neural network investigations are currently absent in adolescent chronic fatigue syndrome (CFS). In this study, we examine whether the core intrinsic connectivity networks (ICNs) are altered in adolescent CFS patients.

Eighteen adolescent patients with CFS and 18 aged matched healthy adolescent control subjects underwent resting-state functional magnetic resonance imaging (rfMRI). Data was analyzed using dual-regression independent components analysis, which is a data-driven approach for the identification of independent brain networks. Intrinsic connectivity was evaluated in the default mode network (DMN), salience network (SN), and central executive network (CEN). Associations between network characteristics and symptoms of CFS were also explored.

Adolescent CFS patients displayed a significant decrease in SN functional connectivity to the right posterior insula compared to healthy comparison participants, which was related to fatigue symptoms. Additionally, there was an association between pain intensity and SN functional connectivity to the left middle insula and caudate that differed between adolescent patients and healthy comparison participants.

Our findings of insula dysfunction and its association with fatigue severity and pain intensity in adolescent CFS demonstrate an aberration of the salience network which might play a role in CFS pathophysiology.

 

Source: Wortinger LA, Endestad T, Melinder AM, Øie MG, Sevenius A, Bruun Wyller V. Aberrant Resting-State Functional Connectivity in the Salience Network of Adolescent Chronic Fatigue Syndrome. PLoS One. 2016 Jul 14;11(7):e0159351. doi: 10.1371/journal.pone.0159351. ECollection 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944916/ (Full article)