Cytometry profiling of ex vivo recall responses to Coxiella burnetii in previously naturally exposed individuals reveals long-term changes in both adaptive and innate immune cellular compartments

Abstract:

Introduction: Q fever, caused by the intracellular bacterium Coxiella burnetii, is considered an occupational and biodefense hazard and can result in debilitating long-term complications. While natural infection and vaccination induce humoral and cellular immune responses, the exact nature of cellular immune responses to C. burnetii is incompletely understood. The current study seeks to investigate more deeply the nature of long-term cellular recall responses in naturally exposed individuals by both cytokine release assessment and cytometry profiling.

Methods: Individuals exposed during the 2007-2010 Dutch Q fever outbreak were grouped in 2015, based on a C. burnetii-specific IFNγ release assay (IGRA), serological status, and self-reported clinical symptoms during initial infection, into asymptomatic IGRA-negative/seronegative controls, and three IGRA-positive groups (seronegative/asymptomatic; seropositive/asymptomatic and seropositive/symptomatic). Recall responses following in vitro re-stimulation with heat-inactivated C. burnetii in whole blood, were assessed in 2016/2017 by cytokine release assays (n=55) and flow cytometry (n=36), and in blood mononuclear cells by mass cytometry (n=36).

Results: Cytokine release analysis showed significantly elevated IL-2 responses in all seropositive individuals and elevated IL-1β responses in those recovered from symptomatic infection. Comparative flow cytometry analysis revealed significantly increased IFNγ, TNFα and IL-2 recall responses by CD4 T cells and higher IL-6 production by monocytes from symptomatic, IGRA-positive/seropositive individuals compared to controls. Mass cytometry profiling and unsupervised clustering analysis confirmed recall responses in seropositive individuals by two activated CD4 T cell subsets, one characterized by a strong Th1 cytokine profile (IFNγ+IL-2+TNFα+), and identified C. burnetii-specific activation of CD8 T cells in all IGRA-positive groups. Remarkably, increased C. burnetii-specific responses in IGRA-positive individuals were also observed in three innate cell subpopulations: one characterized by an IFNγ+IL-2+TNFα+ Th1 cytokine profile and lack of canonical marker expression, and two IL-1β-, IL-6- and IL-8-producing CD14+ monocyte subsets that could be the drivers of elevated secretion of innate cytokines in pre-exposed individuals.

Discussion: These data highlight that there are long-term increased responses to C. burnetii in both adaptive and innate cellular compartments, the latter being indicative of trained immunity. These findings warrant future studies into the protective role of these innate responses and may inform future Q fever vaccine design.

Source: Raju Paul S, Scholzen A, Reeves PM, Shepard R, Hess JM, Dzeng RK, Korek S, Garritsen A, Poznansky MC, Sluder AE. Cytometry profiling of ex vivo recall responses to Coxiella burnetii in previously naturally exposed individuals reveals long-term changes in both adaptive and innate immune cellular compartments. Front Immunol. 2023 Oct 11;14:1249581. doi: 10.3389/fimmu.2023.1249581. PMID: 37885896; PMCID: PMC10598782. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598782/ (Full text)

In severe first episode major depressive disorder, psychosomatic, chronic fatigue syndrome, and fibromyalgia symptoms are driven by immune activation and increased immune-associated neurotoxicity.

Abstract:

Background: Major depressive disorder (MDD) is accompanied by activated neuro-immune pathways, increased physiosomatic and chronic fatigue-fibromyalgia (FF) symptoms. The most severe MDD phenotype, namely major dysmood disorder (MDMD), is associated with adverse childhood experiences (ACEs) and negative life events (NLEs) which induce cytokines/chemokines/growth factors.

Aims: To delineate the impact of ACE+NLEs on physiosomatic and FF symptoms in first episode (FE)-MDMD, and examine whether these effects are mediated by immune profiles.

Methods: ACEs, NLEs, physiosomatic and FF symptoms, and 48 cytokines/chemokines/growth factors were measured in 64 FE-MDMD patients and 32 normal controls.

Results: Physiosomatic, FF and gastro-intestinal symptoms belong to the same factor as depression, anxiety, melancholia, and insomnia. The first factor extracted from these seven domains is labeled the physio-affective phenome of depression. A part (59.0%) of the variance in physiosomatic symptoms is explained by the independent effects of interleukin (IL)-16 and IL-8 (positively), CCL3 and IL-1 receptor antagonist (inversely correlated). A part (46.5%) of the variance in physiosomatic (59.0%) symptoms is explained by the independent effects of interleukin (IL)-16, TNF-related apoptosis-inducing ligand (TRAIL) (positively) and combined activities of negative immunoregulatory cytokines (inversely associated).

Partial Least Squares analysis shows that ACE+NLEs exert a substantial influence on the physio-affective phenome which are partly mediated by an immune network composed of interleukin-16, CCL27, TRAIL, macrophage-colony stimulating factor, and stem cell growth factor.

Conclusions: The physiosomatic and FF symptoms of FE-MDMD are partly caused by immuneassociated neurotoxicity due to Th-1 polarization, T helper-1, and M1 macrophage activation and relative lowered compensatory immunoregulatory protection.

Source: Michael Maes, Abbas F Almulla, Bo Zhou, Ali Abbas Abo Algon, Pimpayao Sodsai. In severe first episode major depressive disorder, psychosomatic, chronic fatigue syndrome, and fibromyalgia symptoms are driven by immune activation and increased immune-associated neurotoxicity. ResearchGate [Preprint] https://www.researchgate.net/publication/372940821_In_severe_first_episode_major_depressive_disorder_psychosomatic_chronic_fatigue_syndrome_and_fibromyalgia_symptoms_are_driven_by_immune_activation_and_increased_immune-associated_neurotoxicity (Full text)

Influence of Chronic Fatigue Syndrome Codiagnosis on the Relationship between Perceived and Objective Psychoneuro-Immunoendocrine Disorders in Women with Fibromyalgia

Abstract:

Although the predominant symptom in fibromyalgia (FM) is muscle pain, and fatigue in chronic fatigue syndrome (CFS), differential diagnosis is very difficult. This research investigates the psychoneuroimmunoendocrine disorders of FM patients and ascertains whether a previous CFS diagnosis affected them.

Through accelerometry objective parameters, physical activity/sedentarism levels in relation to fatigue are studied, as well as whether perceived levels of stress, anxiety, and pain correspond to objective biomarkers, all of these with respect to a reference group (RG) of women without FM.

FM patients have a worse psychological state and perceived quality of life than those with RG. These perceived outcomes are consistent with impaired objective levels of a sedentary lifestyle, higher systemic levels of cortisol and noradrenaline, and lower levels of serotonin.

However, FM patients with a previous CFS diagnosis had lower systemic levels of IL-8, cortisol, oxytocin, and higher levels of adrenaline and serotonin than FM patients without diagnosed CFS.

In conclusion, while perceived health parameters do not detect differences, when objective neuroimmunoendocrine parameters related to stress, inflammation, pain, and fatigue are used, people with CFS could be overdiagnosed with FM. This reinforces the need for objective biomarker assessment of these patients for better diagnostic discrimination between both syndromes.

Source: Otero E, Gálvez I, Ortega E, Hinchado MD. Influence of Chronic Fatigue Syndrome Codiagnosis on the Relationship between Perceived and Objective Psychoneuro-Immunoendocrine Disorders in Women with Fibromyalgia. Biomedicines. 2023; 11(5):1488. https://doi.org/10.3390/biomedicines11051488 https://www.mdpi.com/2227-9059/11/5/1488 (Full text)

Cytokine deficiencies in patients with Long-COVID

Abstract:

Up to half of individuals who contract SARS-CoV-2 develop symptoms of long-COVID approximately three months after initial infection. These symptoms are highly variable, and the mechanisms inducing them are yet to be understood. We compared plasma cytokine levels from individuals with long-COVID to healthy individuals and found that those with long-COVID had 100% reductions in circulating levels of Interferon Gamma (IFNγ) and Interleukin-8 (IL-8). Additionally, we found significant reductions in levels of IL-6, IL-2, IL-17, IL-13, and IL-4 in individuals with long-COVID.

We propose immune exhaustion as the driver of long-COVID, with the complete absence of IFNγ and IL-8 preventing the lungs and other organs from healing after acute infection, and reducing the ability to fight off subsequent infections, both contributing to the myriad of symptoms suffered by those with long-COVID.

Source: Williams ES, Martins TB, Shah KS, Hill HR, Coiras M, Spivak AM, Planelles V. Cytokine Deficiencies in Patients with Long-COVID. J Clin Cell Immunol. 2022;13(6):672. Epub 2022 Nov 18. PMID: 36742994; PMCID: PMC9894377. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894377/ (Full text)

Plasma cytokine levels reveal deficiencies in IL-8 and gamma interferon in Long-COVID

Abstract:

Up to half of individuals who contract SARS-CoV-2 develop symptoms of long-COVID approximately three months after initial infection. These symptoms are highly variable, and the mechanisms inducing them are yet to be understood.

We compared plasma cytokine levels from individuals with long-COVID to healthy individuals and found that those with long-COVID had 100% reductions in circulating levels of interferon gamma (IFNγ) and interleukin-8 (IL-8). Additionally, we found significant reductions in levels of IL-6, IL-2, IL-17, IL-13, and IL-4 in individuals with long-COVID.

We propose immune exhaustion as the driver of long-COVID, with the complete absence of IFNγ and IL-8 preventing the lungs and other organs from healing after acute infection, and reducing the ability to fight off subsequent infections, both contributing to the myriad of symptoms suffered by those with long-COVID.

Source: Williams ESCP, Martins TB, Hill HR, Coiras M, Shah KS, Planelles V, Spivak AM. Plasma cytokine levels reveal deficiencies in IL-8 and gamma interferon in Long-COVID. medRxiv [Preprint]. 2022 Oct 5:2022.10.03.22280661. doi: 10.1101/2022.10.03.22280661. PMID: 36238724; PMCID: PMC9558442. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558442/ (Full text)

Cytokine network analysis in a community-based pediatric sample of patients with myalgic encephalomyelitis/chronic fatigue syndrome

Abstract:

Objectives: Studies have demonstrated immune dysfunction in adolescents with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS); however, evidence is varied. The current study used network analysis to examine relationships between cytokines among a sample of pediatric participants with ME/CFS.

Methods: 10,119 youth aged 5-17 in the Chicagoland area were screened for ME/CFS; 111 subjects and controls were brought in for a physician examination and completed a blood draw. Youth were classified as controls (Cs, N = 43), ME/CFS (N = 23) or severe (S-ME/CFS, N = 45). Patterns of plasma cytokine networks were analyzed.

Results: All participant groups displayed a primary network of interconnected cytokines. In the ME/CFS group, inflammatory cytokines IL-12p70, IL-17A, and IFN-γ were connected and included in the primary membership, suggesting activation of inflammatory mechanisms. The S-ME/CFS group demonstrated a strong relationship between IL-17A and IL-23, a connection associated with chronic inflammation. The relationships of IL-6 and IL-8 in ME/CFS and S-ME/CFS participants also differed from Cs. Together, these results indicate pro-inflammatory responses in our illness populations.

Discussion: Our data imply biological differences between our three participant groups, with ME/CFS and S-ME/CFS participants demonstrating an inflammatory profile. Examining co-expression of cytokines may aid in the identification of a biomarker for pediatric ME/CFS.

Source: Jason LA, Gaglio CL, Furst J, Islam M, Sorenson M, Conroy KE, Katz BZ. Cytokine network analysis in a community-based pediatric sample of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Chronic Illn. 2022 May 16:17423953221101606. doi: 10.1177/17423953221101606. Epub ahead of print. PMID: 35570777.  https://pubmed.ncbi.nlm.nih.gov/35570777/

Evaluation of four clinical laboratory parameters for the diagnosis of myalgic encephalomyelitis

Abstract:

Background: Myalgic encephalomyelitis (ME) is a complex and debilitating disease that often initially presents with flu-like symptoms, accompanied by incapacitating fatigue. Currently, there are no objective biomarkers or laboratory tests that can be used to unequivocally diagnosis ME; therefore, a diagnosis is made when a patient meets series of a costly and subjective inclusion and exclusion criteria. The purpose of the present study was to evaluate the utility of four clinical parameters in diagnosing ME.

Methods: In the present study, we utilized logistic regression and classification and regression tree analysis to conduct a retrospective investigation of four clinical laboratory in 140 ME cases and 140 healthy controls.

Results: Correlations between the covariates ranged between [− 0.26, 0.61]. The best model included the serum levels of the soluble form of CD14 (sCD14), serum levels of prostaglandin E2 (PGE2), and serum levels of interleukin 8, with coefficients 0.002, 0.249, and 0.005, respectively, and p-values of 3 × 10−7, 1 × 10−5, and 3 × 10−3, respectively.

Conclusions: Our findings show that these parameters may help physicians in their diagnosis of ME and may additionally shed light on the pathophysiology of this disease.

© The Author(s) 2018

Source: Kenny L. De Meirleir, Tatjana Mijatovic, Krishnamurthy Subramanian, Karen A. Schlauch and Vincent C. Lombardi. Evaluation of four clinical laboratory parameters for the diagnosis of myalgic encephalomyelitis. Journal of Translational Medicine201816:322
https://doi.org/10.1186/s12967-018-1696-z Received: 1 September 2018, Accepted: 14 November 2018, Published: 21 November 2018 https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-018-1696-z (Full article)

Illness progression in chronic fatigue syndrome: a shifting immune baseline

Abstract:

BACKGROUND: Validation of biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) across data sets has proven disappointing. As immune signature may be affected by many factors, our objective was to explore the shift in discriminatory cytokines across ME/CFS subjects separated by duration of illness.

METHODS: Cytokine expression collected at rest across multiple studies for female ME/CFS subjects (i) 18 years or younger, ill for 2 years or less (n = 18), (ii) 18-50 years of age, ill for 7 years (n = 22), and (iii) age 50 years or older (n = 28), ill for 11 years on average. Control subjects were matched for age and body mass index (BMI). Data describing the levels of 16 cytokines using a chemiluminescent assay was used to support the identification of separate linear classification models for each subgroup. In order to isolate the effects of duration of illness alone, cytokines that changed significantly with age in the healthy control subjects were excluded a priori.

RESULTS: Optimal selection of cytokines in each group resulted in subsets of IL-1α, 6, 8, 15 and TNFα. Common to any 2 of 3 groups were IL-1α, 6 and 8. Setting these 3 markers as a triple screen and adjusting their contribution according to illness duration sub-groups produced ME/CFS classification accuracies of 75-88 %. The contribution of IL-1α, higher in recently ill adolescent ME/CFS subjects was progressively less important with duration. While high levels of IL-8 screened positive for ME/CFS in the recently afflicted, the opposite was true for subjects ill for more than 2 years. Similarly, while low levels of IL-6 suggested early ME/CFS, the reverse was true in subjects over 18 years of age ill for more than 2 years.

CONCLUSIONS: These preliminary results suggest that IL-1α, 6 and 8 adjusted for illness duration may serve as robust biomarkers, independent of age, in screening for ME/CFS.

 

Source: Russell L, Broderick G, Taylor R, Fernandes H, Harvey J, Barnes Z, Smylie A, Collado F, Balbin EG, Katz BZ, Klimas NG, Fletcher MA. Illness progression in chronic fatigue syndrome: a shifting immune baseline. BMC Immunol. 2016 Mar 10;17:3. doi: 10.1186/s12865-016-0142-3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785654/ (Full article)