Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Post-COVID Syndrome: A Common Neuroimmune Ground?

Abstract:

A Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic disease of unknown aetiology under growing interest now in view of the increasingly recognized post-COVID syndrome as a new entity with similar clinical presentation.

We performed the first cross-sectional study of ME/CFS in community population in Russia and then described and compared some clinical and pathophysiological characteristics of ME/CFS and post-COVID syndrome as neuroimmune disorders.

Of the cohort of 76 individuals who suggested themselves suffering from ME/CFS 56 subsequently were confirmed as having CFS/ME according to ≥1 of the 4 most commonly used case definition.

Of the cohort of 14 individuals with post-COVID-19 syndrome 14 met diagnostic criteria for ME/CFS. The prevalence of clinically expressed and subclinical anxiety and depression in ME / CFS and post-COVID ME/CFS did not differ significantly from that in healthy individuals.

Severity of anxiety / depressive symptoms did not correlate with the severity of fatigue neigther in ME / CFS nor in post-COVID ME/CFS, but the positive correlation was found between the severity of fatigue and 20 other symptoms of ME / CFS related to the domains of “post-exertional exhaustion”, “immune dysfunction”, “sleep disturbances”, “dysfunction of the autonomic nervous system”, “neurological sensory / motor disorders” and “pain syndromes”.

Immunological abnormalities were identified in 12/12 patients with ME / CFS according to the results of laboratory testing.

The prevalence of postural orthostatic tachycardia assessed by the active standing test was 37.5% in ME / CFS and 75.0% in post-COVID ME/CFS (the latter was higher than in healthy controls, p = 0.02).  There was a more pronounced increase in heart rate starting from the 6th minute of the test in post-COVID ME/CFS compared with the control group.

Assessment of the functional characteristics of microcirculation by laser doppler flowmetry revealed obvious and very similar changes in ME/CFS and post-COVID ME/CFS compared to the healthy controls.  The identified pattern corresponded to the hyperemic form of microcirculation disorders, usually observed in acute inflammatory processes or in deficiency of systemic vasoconstriction influences.

Source: Ryabkova, V.A.; Gavrilova, N.Y.; Fedotkina, T.V.; Churilov, L.P.; Shoenfeld, Y. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Post-COVID Syndrome: A Common Neuroimmune Ground?. Preprints 2022, 2022090289 (doi: 10.20944/preprints202209.0289.v1) https://www.preprints.org/manuscript/202209.0289/v1 (Full study available as PDF file)

Circadian skin temperature rhythm and dysautonomia in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the role of endothelin-1 in the vascular dysregulation

Abstract:

Purpose: There is accumulating evidence of autonomic dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS); however, little is known about its association with circadian rhythms and endothelial dysfunction. This study aimed to explore the relationship between autonomic responses using an orthostatic test, skin temperature circadian variations, and circulating endothelial biomarkers in ME/CFS.

Methods: Sixty-seven adult female ME/CFS patients and 48 matched healthy controls were enrolled. Demographic and clinical characteristics suggestive of autonomic disturbances were assessed using validated self-reported outcome measures. Postural changes in blood pressure [BP], heart rate [HR], and wrist temperature (WT) were recorded during the orthostatic test. Actigraphy during one week was used to determine the 24-hour profile of peripheral temperature and motor activity. Circulating endothelial biomarkers were also measured as indicators of endothelial functioning.

Results: ME/CFS patients showed higher BP and HR values than healthy controls at rest (p < 0.05 for both), and also higher amplitude of the circadian activity rhythm (p < 0.01). Circulating levels of endothelin-1 (ET-1) and vascular cell adhesion molecule-1 (VCAM-1) were significantly higher in ME/CFS (p < 0.05). In ME/CFS, ET-1 levels were associated with the stability and amplitude of the temperature rhythm, (p < 0.01), and also with the self-reported questionnaires (p < 0.001).

Conclusions: ME/CFS patients exhibited alterations in circadian rhythms and hemodynamic measures that are associated with endothelial dysfunction, supporting previous evidence of dysautonomia in ME/CFS. Future investigation in this area is needed to assess vascular tone abnormalities and dysautonomia which may provide therapeutic targets for ME/CFS.

Source: Trinitat Cambras, Maria Fernanda Zerón-Rugerio, Antoni Díez-Noguera et al. Circadian skin temperature rhythm and dysautonomia in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the role of endothelin-1 in the vascular dysregulation, 21 September 2022, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-2044838/v1 (Full text)

The higher resting heart rate in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients compared to healthy controls: relation with stroke volumes

Abstract:

Introduction: In patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) a higher-than-normal resting heart rate has been reported in a number of studies. As heart rate is linked to stroke volume, the present study explored the relationship between the supine heart rate and stroke volume index in healthy controls and in ME/CFS patients. Moreover, as patients with a postural orthostatic tachycardia syndrome (POTS) during tilt testing, have a higher supine heart rate than patients with a normal heart rate and blood pressure response during tilting, these two patient groups were also compared.

Methods and results: From a database of individuals who had undergone tilt-testing, including supine Doppler measurements for stroke volume index calculation, we selected ME/CFS patients and healthy controls without evidence of hypotension or syncope. 474 ME/CFS patients were analyzed, 314 with a normal heart rate and blood pressure response and 160 with POTS during tilt-testing, and 56 healthy controls. Resting stroke volume indices were similar between the 3 groups. All 3 groups had an inverse relation between the resting stroke volume index and resting heart rate (all p<0.0001). The slope of the relation was not significantly different between the 3 groups. Using the upper limit of the 95% prediction interval for the heart rate of healthy controls, 46 (15%) of patients with a normal heart rate and blood pressure response had a resting heart rate above the upper limit, 248 (85%) a heart rate between the upper and lower limit. In 47 (29%) patients developing POTS the resting heart rate was above the upper limit, and in 113 (71%) patients within the upper limit and lower limit. This distribution was significantly different between the two patient groups (p=0.0001).

Conclusion: Patients and healthy controls showed a significant and inverse relation between the SVI and heart rate at rest. Already at rest heart rate in patients developing POTS during tilt-testing were higher compared to the patients with a normal heart rate and blood pressure response per unit of SVI, but the heart rate of the majority of all patients fell within the limits of normal of healthy controls. The difference of patients with heart rate above the upper limit versus between the upper limit and lower limit deserves further investigation and may have therapeutic implications.

Source: VAN CAMPEN, C (Linda) M.C.; VISSER, Frans C.. The higher resting heart rate in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients compared to healthy controls: relation with stroke volumes.. Medical Research Archives, [S.l.], v. 10, n. 6, june 2022. ISSN 2375-1924. Available at: https://esmed.org/MRA/mra/article/view/2891. Date accessed: 17 july 2022. doi: https://doi.org/10.18103/mra.v10i6.2891.

Risk factors and multidimensional assessment of long COVID fatigue: a nested case-control study

Abstract:

Background: Fatigue is the most prevalent and debilitating long COVID symptom, however risk factors and pathophysiology of this condition remain unknown. We assessed risk factors for long COVID fatigue and explored its possible pathophysiology.

Methods: Nested case-control study in a COVID recovery clinic. Individuals with (cases) and without (controls) significant fatigue were included. We performed a multidimensional assessment evaluating various parameters, including pulmonary function tests and cardiopulmonary exercise testing, and implemented multivariable logistic regression to assess risk factors for significant long COVID fatigue.

Results: Total of 141 individuals were included. Mean age was 47 (SD 13) years; 115 (82%) were recovering from mild COVID-19. Mean time for evaluation was 8 months following COVID-19. Sixty-six (47%) individuals were classified with significant long COVID fatigue. They had significantly higher number of children, lower proportion of hypothyroidism, higher proportion of sore throat during acute illness and long COVID symptoms, and of physical limitation in daily activities. Individuals with fatigue had poorer sleep quality and higher degree of depression. They had significantly lower heart rate [153.52 (22.64) vs 163.52 (18.53), p=0.038] and oxygen consumption per Kg [27.69 (7.52) vs 30.71 (7.52), p=0.036] at peak exercise. The two independent risk factors for fatigue identified in multivariable analysis were peak exercise heart rate (odds ratio [OR] 0.79 per 10 beats/minute, 95% confidence interval [CI] 0.65-0.96, p=0.019); and long COVID memory impairment (OR 3.76, 95% CI 1.57-9.01, p=0.003).

Conclusions: Long COVID fatigue may be related to autonomic dysfunction, impaired cognition and decreased mood. This may suggest a limbic-vagal pathophysiology. Clinical Trial registration: NCT04851561.

Source: Margalit I, Yelin D, Sagi M, Rahat MM, Sheena L, Mizrahi N, Gordin Y, Agmon H, Epstein NK, Atamna A, Tishler O, Daitch V, Babich T, Abecasis D, Yarom Y, Kazum S, Shitenberg D, Baltaxe E, Elkana O, Shapira-Lichter I, Leibovici L, Yahav D. Risk factors and multidimensional assessment of long COVID fatigue: a nested case-control study. Clin Infect Dis. 2022 Apr 11:ciac283. doi: 10.1093/cid/ciac283. Epub ahead of print. PMID: 35403679.  https://pubmed.ncbi.nlm.nih.gov/35403679/

Autonomic dysfunction and post-COVID-19 syndrome: A still elusive link

Editorial:

Infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the long-lasting pandemic coronavirus disease 2019 (COVID-19), with dramatic clinical, social, and economic implications. Importantly, evolving experience consistently shows that, in addition to issues related to the acute phase, patients who recover from COVID-19 may present a wide variety of bothersome symptoms, which may be debilitating and significantly impair their quality of life. This condition, when it persists beyond 12 weeks after recovery, is defined as “post–COVID-19” or “long COVID-19” syndrome.

Some of the symptoms, including tachycardia/palpitations, chest pain, fatigue, and dyspnea with reduced effort tolerance, suggest a possible cardiovascular cause, whereas others (eg, muscle and/or joint pain, headache, memory loss, nausea, mood disturbances) suggest involvement of other systems. Symptoms may occur independently of the severity of COVID-19, although patients with more severe symptoms in the acute phase experience a higher rate of symptom persistence during follow-up. , 

Importantly, careful diagnostic assessment usually fails to identify specific causes of post–COVID-19 syndrome. However, it has been suggested that at least some post–COVID-19 symptoms, including those of potential cardiovascular origin, might be related to abnormalities of the autonomic nervous system (ANS). The pathophysiological mechanisms responsible for ANS impairment remain speculative and might include direct damage of the ANS (ganglia and/or nerve terminations) by the virus, a toxic effect of inflammatory cytokines released during the acute infection, and an immune-mediated response triggered by some viral component(s). ,  Independent of the mechanism, the possibility of ANS involvement in SARS-CoV-2 infection is supported by the frequent occurrence of neurologic symptoms (eg, anosmia, dysgeusia) as well as the sporadic occurrence of clinical conditions typically related to ANS dysfunction (eg, orthostatic hypotension, orthostatic tachycardia) in post–COVID-19 syndrome. Furthermore, patients with COVID-19, compared to healthy subjects, have been found to show reduced heart rate variability (HRV) parameters 20 weeks after recovery from the illness. However, a pathogenetic relationship between dysautonomia and post–COVID-19 syndrome remains to be demonstrated. Establishing such a relationship would be of importance because it might help guide the management of this clinical condition.

The study by Ladlow et al in this issue of Heart Rhythm Journal is welcome because it attempts to clarify whether any association exists between dysautonomia and symptoms, as well as objective evidence of exercise intolerance, in patients with post–COVID-19 syndrome. In their study, Ladlow et al enrolled 205 patients referred to a post–COVID-19 clinic who fulfilled specific eligibility criteria (hospitalization and desaturation ≤95% on a Harvard step test or chest pain with electrocardiographic [ECG] changes during acute illness and life-limiting symptoms persisting for >12 weeks). All patients underwent bicycle cardiopulmonary exercise testing (CPET) and were divided into 1 of 2 groups according to evidence or no evidence of dysautonomia.

Dysautonomia was diagnosed based on 3 heart rate (HR) parameters that Jouven et al found to be associated with total mortality and sudden death in a population of asymptomatic subjects: (1) resting HR >75 bpm; (2) increase in HR during exercise <89 bpm; and (3) HR reduction <25 bpm during the first minute of recovery from peak exercise. HRV was also assessed by calculating the root mean square of the squared differences of adjacent RR intervals (RMSSD) on a 1-minute 12-lead ECG at rest and on 30-second ECGs during the first 3 minutes of recovery after peak exercise.

Patients were studied 183 ± 77 days (∼6 months) from COVID-19 disease, and dysautonomia was found in 51 patients (25%). Per definition, these patients had higher HR at rest (95 ± 12 bpm vs 81 ± 12 bpm; P <.001) and lower HR increase during CPET (75 ± 12 bpm vs 96 ± 13 bpm; P <.001) and HR recovery after peak exercise (17 ± 4 bpm vs 31 ± 17 bpm; P <.001) compared to those without dysautonomia.

Patients with dysautonomia were older, had a higher body mass index (BMI) (P = .013) and waist circumference (WC) (P = .003), and had a lower basal RMSSD (P <.001). Furthermore, at rest, dysautonomic patients showed a higher breathing rate (P = .006) and lower forced vital capacity (P = .031), forced expiratory volume in 1 second (P = .036), and ventilatory efficiency (Ve/Vco 2) (P = .036).

When assessing symptoms that showed prevalence >25%, a significant association with dysautonomia was found for low mood (P = .007), headache (P = .026), and poor attention (P = .047). However, other symptoms, including some of potential cardiovascular origin (eg, shortness of breath, fatigue), showed no significant association with dysautonomia.

Patients with dysautonomia, however, showed a lower performance on CPET. In particular, HR at peak exercise (170 ± 13 bpm vs 177 ± 15 bpm; P = .003), maximal work rate (219 ± 37 W vs 253 ± 52 W; P <.001), and maximal oxygen consumption (VO2) (30.6 ± 5.5 mL/kg/min vs 35.8 ± 7.6 mL/kg/min; P <.001) all were significantly lower in patients with dysautonomia than in those without dysautonomia, suggesting a role of ANS dysfunction in their physical limitation.

Ladlow et al should be congratulated for performing this large study on post–COVID-19 syndrome. However, possible alternative interpretations of the data suggest caution in deriving definitive conclusions from their results.

Although the study shows the lack of significant relationship between dysautonomia and most post–COVID-19 symptoms, including, in particular, some symptoms of possible cardiovascular origin, the method applied to identify patients with an impairment of ANS function presents some limitations. Both higher HR at rest and lower HR recovery after exercise suggest an imbalance of sympathovagal tone toward adrenergic predominance in their patients with dysautonomia. However, rather than reflecting a primary impairment of the ANS, these findings simply might have been related to differences between the 2 groups with regard to some basal clinical characteristics, including higher BMI/WC, lower efficiency in respiratory function, and lower mood in dysautonomic patients. In addition, the lower increase in HR during maximal exercise in patients with dysautonomia might have been a mere consequence of their having a higher HR at rest and, given their older age, a lower maximal theoretical HR for age. The percent of predicted maximal HR for age achieved during CPET, in fact, did not differ between the 2 groups. The possibility that the differences in HR behavior might have not been related to a primary abnormality of the ANS is also suggested by the fact that, despite the basal difference, RMSSD values were similar during exercise recovery in the 2 groups of patients, suggesting a similar ANS response to exercise interruption in the 2 groups.

Future studies should clarify whether different results regarding the relationship between ANS dysfunction and post–COVID-19 symptoms might be obtained using more comprehensive and better validated methods for the diagnosis of ANS dysfunction, such as standard tests of autonomic function and HRV assessed from its multiple (short-term and long-term) components.

Of note, although the results of CPET in the study by Ladlow et al suggest lower performance by patients classified with dysautonomia, exercise tolerance was largely normal in these subjects, who achieved >100% of the predicted maximal oxygen consumption and an average maximal work rate of 219 W, with only small differences compared to patients without dysautonomia, possibly explained, again, and at least in part, by some demographic (age) and clinical (BMI, respiratory function) differences.

In conclusion, the study by Ladlow et al provides interesting data on the clinical characteristics and objective physical performance of patients with post–COVID-19 syndrome. However, the role of ANS in determining symptoms (particularly those of potential cardiovascular origin) and physical limitation in these patients still has not been fully elucidated by their data, making necessary further studies applying more comprehensive and valuable methods for the assessment of ANS function.

Source: Lanza GA. Autonomic dysfunction and post-COVID-19 syndrome: A still elusive link. Heart Rhythm. 2022 Apr;19(4):621-622. doi: 10.1016/j.hrthm.2021.12.027. Epub 2021 Dec 28. PMID: 34968741; PMCID: PMC8712711. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8712711/ (Full study)

Lessons from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome for Long COVID Part 4: Heart Rate Monitoring to Manage Postexertional Symptom Exacerbation

The physiology underlying postexertional symptom exacerbation (PESE) is abnormal in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and likely long COVID. Activity pacing approaches appear warranted to accommodate the unusual physiological deficits of PESE.

The Rationale for Heart Rate Monitoring

Similar to people living with ME/CFS,7 people living with long COVID have reported finding activity pacing to be helpful. This idea is reflected in current safe rehabilitation guidelines for this condition.8 PESE is challenging to self-manage because of the variability in onset, duration, and nature from person to person.2,6 Social stigma associated with PESE may lead people to overexert to meet the demands of their daily tasks. This stigma may be exacerbated by people telling patients that “it’s all in their head” or they “just need to exercise.” Variability and stigma, in turn, make it difficult to identify important activity triggers in the early stages of learning to manage PESE.

PESE is characterized by aerobic system dysfunction. Pacing based on heart rate can help the patient avoid the dysfunctional aerobic system by keeping their activity intensity at a level anaerobic metabolism will dominate. Heart rate monitoring (HRM) provides an element of predictive potential for the patient to understand when their activities exceed physiological limits and eventually may result in PESE. In this post, we will discuss activity pacing to manage PESE that is based on HRM.

Source: Todd E. Davenport, Staci R. Stevens, Jared Stevens, Christopher R. Snell, J. Mark Van Ness. Lessons from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome for Long COVID Part 4: Heart Rate Monitoring to Manage Postexertional Symptom Exacerbation. Published online on February 23, 2022. https://doi.org/10.2519/jospt.blog.20220223 (Full text)

Reduced Parasympathetic Reactivation during Recovery from Exercise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Although autonomic nervous system (ANS) dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) has been proposed, conflicting evidence makes it difficult to draw firm conclusions regarding ANS activity at rest in ME/CFS patients. Although severe exercise intolerance is one of the core features of ME/CFS, little attempts have been made to study ANS responses to physical exercise. Therefore, impairments in ANS activation at rest and following exercise were examined using a case-control study in 20 ME/CFS patients and 20 healthy people.

Different autonomous variables, including cardiac, respiratory, and electrodermal responses were assessed at rest and following an acute exercise bout. At rest, parameters in the time-domain represented normal autonomic function in ME/CFS, while frequency-domain parameters indicated the possible presence of diminished (para)sympathetic activation. Reduced parasympathetic reactivation during recovery from exercise was observed in ME/CFS.

This is the first study showing reduced parasympathetic reactivation during recovery from physical exercise in ME/CFS. Delayed HR recovery and/or a reduced HRV as seen in ME/CFS have been associated with poor disease prognosis, high risk for adverse cardiac events, and morbidity in other pathologies, implying that future studies should examine whether this is also the case in ME/CFS and how to safely improve HR recovery in this population.

Source: Van Oosterwijck J, Marusic U, De Wandele I, Meeus M, Paul L, Lambrecht L, Moorkens G, Danneels L, Nijs J. Reduced Parasympathetic Reactivation during Recovery from Exercise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Clin Med. 2021 Sep 30;10(19):4527. doi: 10.3390/jcm10194527. PMID: 34640544; PMCID: PMC8509376. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509376/ (Full text)

Reduced Parasympathetic Reactivation during Recovery from Exercise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Abstract:

Although autonomic nervous system (ANS) dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) has been proposed, conflicting evidence makes it difficult to draw firm conclusions regarding ANS activity at rest in ME/CFS patients. Although severe exercise intolerance is one of the core features of ME/CFS, little attempts have been made to study ANS responses to physical exercise. Therefore, impairments in ANS activation at rest and following exercise were examined using a case-control study in 20 ME/CFS patients and 20 healthy people.

Different autonomous variables, including cardiac, respiratory, and electrodermal responses were assessed at rest and following an acute exercise bout. At rest, parameters in the time-domain represented normal autonomic function in ME/CFS, while frequency-domain parameters indicated the possible presence of diminished (para)sympathetic activation. Reduced parasympathetic reactivation during recovery from exercise was observed in ME/CFS.

This is the first study showing reduced parasympathetic reactivation during recovery from physical exercise in ME/CFS. Delayed HR recovery and/or a reduced HRV as seen in ME/CFS have been associated with poor disease prognosis, high risk for adverse cardiac events, and morbidity in other pathologies, implying that future studies should examine whether this is also the case in ME/CFS and how to safely improve HR recovery in this population.

Source: Van Oosterwijck J, Marusic U, De Wandele I, Meeus M, Paul L, Lambrecht L, Moorkens G, Danneels L, Nijs J. Reduced Parasympathetic Reactivation during Recovery from Exercise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Clin Med. 2021 Sep 30;10(19):4527. doi: 10.3390/jcm10194527. PMID: 34640544. https://pubmed.ncbi.nlm.nih.gov/34640544/

Female Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome or Idiopathic Chronic Fatigue: Comparison of Responses to a Two-Day Cardiopulmonary Exercise Testing Protocol

Abstract:

Introduction: Multiple studies have shown that peak oxygen consumption is reduced in the majority of ME/CFS patients, using the golden standard for measuring exercise intolerance: cardiopulmonary exercise testing (CPET). A 2-day CPET protocol has shown different results on day 2 in ME/CFS patients compared to sedentary controls. No comparison is known between ME/CFS and idiopathic chronic fatigue (ICF) for 2-day CPET protocols. We compared ME/CFS patients with patients with chronic fatigue who did not fulfil the ME/CFS criteria in a male population and hypothesized a different pattern of response would be present during the 2nd day CPET.

Methods: Fifty-one female patients with ICF completed a 2-day CPET protocol and were compared to an age/sex-matched group of 50 female ME/CFS patients. Measures of oxygen consumption (VO2), heart rate (HR), systolic and diastolic blood pressure, workload (Work), and respiratory exchange ratio (RER) were collected at maximal (peak) and ventilatory threshold (VT) intensities.

Results: Baseline characteristics for both groups were similar for age, BMI, BSA, and disease duration. A significance difference was present in the number of patients with fibromyalgia (seven ME/CFS patients vs zero ICF patients). Heart rate at rest and the RER did not differ significantly between CPET 1 and CPET 2. All other CPET parameters at the ventilatory threshold and maximum exercise differed significantly (p-value between 0.002 and <0.0001). ME/CFS patients showed a deterioration of performance on CPET2 as reflected by VO2 and workload at peak exercise and ventilatory threshold, whereas ICF patients showed improved performance on CPET2 with no significant change in peak workload.

Conclusion: This study confirms that female ME/CFS patients have a reduction in exercise capacity in response to a second day CPET. These results are similar to published results in female ME/CFS populations. Patients diagnosed with ICF show a different response on day 2, more similar to sedentary and healthy controls.

Source: van Campen CLMC, Visser FC. Female Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome or Idiopathic Chronic Fatigue: Comparison of Responses to a Two-Day Cardiopulmonary Exercise Testing Protocol. Healthcare (Basel). 2021 Jun 5;9(6):682. doi: 10.3390/healthcare9060682. PMID: 34198913. https://pubmed.ncbi.nlm.nih.gov/34198913/

Heart Rate Thresholds to Limit Activity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients (Pacing): Comparison of Heart Rate Formulae and Measurements of the Heart Rate at the Lactic Acidosis Threshold during Cardiopulmonary Exercise Testing

Abstract:

Introduction: Based on the hypothesis that oxidative metabolism is impaired in ME/CFS, a previous study recommended a pacing self-management strategy to prevent post-exertional malaise. This strategy involved a prescription to maintain a heart rate below the anaerobic threshold during physical activities. In the absence of lactate sampling or a cardiopulmonary exercise test (CPET), the pacing self-management formula defines 55% of the age-specific predicted maximal heart rate as the heart rate at the anaerobic threshold. Thus far there has been no empiric evidence to test this self-pacing method of predicting heart rate at anaerobic threshold. The aim of this study was to compare published formula-derived heart rates at the anaerobic threshold with the actual heart rate at the lactic acidosis threshold as determined by CPET.

Methods and Results: Adults with ME/CFS who had undergone a symptom-limited CPET were eligible for this study (30 males, 60 females). We analysed males and females separately because of sex-based differences in peak oxygen consumption. From a review paper, formulae to calculate maximal predicted heart rate were used for healthy subjects. We compared the actual heart rate at the lactic acid threshold during CPET to the predicted heart rates determined by formulae. Using Bland-Altman plots, calculated bias: the mean difference between the actual CPET heart rate at the anaerobic threshold and the formula predicted heart rate across several formulae varied between -28 and 19 bpm in male ME/CFS patients. Even in formulae with a clinically acceptable bias, the limits of agreement (mean bias ± 2SD) were unacceptably high for all formulae. For female ME/CFS patients, bias varied between 6 and 23 bpm, but the limits of agreement were also unacceptably high for all formulae.

Conclusion: Formulae generated in an attempt to help those with ME/CFS exercise below the anaerobic threshold do not reliably predict actual heart rates at the lactic acidosis threshold as measured by a cardiopulmonary exercise test. Formulae based on age-dependent predicted peak heart rate multiplied by 55% have a wide age-specific variability and therefore have a limited application in clinical practice.

Source: van Campen, C. , Rowe, P. and Visser, F. (2020) Heart Rate Thresholds to Limit Activity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients (Pacing): Comparison of Heart Rate Formulae and Measurements of the Heart Rate at the Lactic Acidosis Threshold during Cardiopulmonary Exercise Testing. Advances in Physical Education, 10, 138-154. doi: 10.4236/ape.2020.102013. https://www.scirp.org/journal/paperinformation.aspx?paperid=100333 (Full text)